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ARISTO TZ-LINER

A set square for technical drawing,
combining in one instrument scales
symmetrical about a centre zero, a
parallel ruler and a protractor divided
into 360° or 400°.

ARISTO SPIRAL-SCALE

This consists of three 30 cm (12 in.)
lengths of white ARISTOPAL, bound to-
gether with a plastics spiral. Fifteen
scale ratios are displayed by means of
multiple figuring on the six divided faces.

ARISTO TRIGON

A full circle protractor, divided to 360°
and in radians. For setting out and mea-
surement in either system, or for
conversion from one system to the other.

ARISTOGRAPH

A drafting jinstrument in transparent
ARISTOPAL, for quick and neat sketch-
ing, embodying a protractor divided to
180° and millimeter scales on the edges.
The set square, of sides 85 X 130 mm.,
can be moved (1) as a paraliel ruler on a
roller of 200 mm length and (2) be
shifted simulitaneously, laterally, along
the roller parallel to a given line.

ARISTO-PRODUCTION PROGRAMME

Siide rules - Circular computers - Scales
Drafting equipment - Planimeters
Charting and mapping apparatus

Surveying instruments for use in schools
and on building sites
Coordinatographs for industry and sur-
veying.
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1.

The Scales

THE SLIDE RULE ARISTO MULTILOG

The ARISTO MultiLog is a universal Log Log slide rule for scientists, engineers and students.

Front of Rule: LLot Log Log Scale, Range: .99—.9 o —D01X
LLo2 .91—.35 e—0.1x UPPedr panel
LLo3 .4—.00001 e—X of body
DF Folded Scale X
CF Folded Scale 7TX
CIF Reciprocal Scale folded by = 1/7ex
L Mantissa Scale lg x On slide
Cl Reciprocal Scale 1/x
Cc Fundamental Scale X
D Fundamental Scale X
. X
LL3 Log Log Scale, Range: 2.5 to 100000 e01 ] Lower panel
LL2 1.1 t0 3.0 el 1x of body
LL1 1.01 o 1.11 RS
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Fig.1 Front of Rule
Back of Rule: LLoo Log Log Scale, R 999 to .989 =0.000>
s g Log Scale, Range . 0. e Upper panel
3
K Scale of Cubes Xz of body
A Scale of Squares X
B Scale of Squares x2
i Scale of Tangents figured in black 5.5° to 45°;
figured in red, counter-clockwise, 45° to 84.5°
Also available for Cotangents X tan On slide
ST Scale of Small Angles, in radians, .55° to 6° X arc
S Scale of Sines figured in black, 5.5° to 90°, figured
in red, counter-clockwise for Cosines 0° to 84.5° X sin
C Fundamental Scale X J
D Fundamental Scale X L |
= ower pane
DI Reciprocal Scale 1/x of bodyp
LLo Log Log Scale, Range 1.001 to 1.011 0-001x
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2.  Reading the Scales

Efficient use of the slide rule for rapid calculations is essentially a matter of
learning to read the scales easily and accurately. For guidance refer to Figs. 3—6.
They show the general layout of the scales and give examples of several
specific settings on the most frequently used scales C and D.

Look the C or the D scale over carefully to get a clear overall picture of the
system of division governing the slide rule scales.

Note that the largest, so-called primary intervals are separated by long lines
labeled 1 o 10 in large numerals. These represent the first digit in the sefting or
reading of numbers (Fig. 3). The 10 is always given as 1 as its place is at the
same time the end of one scale as well as the beginning of an imaginary second
scale.

1 2 3 4 S o S
| I | | e Sele s I

Fig. 3 The Primary Intervals

]
&l

Each primary interval again is divided into 10 secondary intervals; each second-
ary division line supplies the second digit in a number. Between the primary 1
and 2 each of the secondary infervals is labeled with somewhat smaller numerals
so that here the second digit in a number can be actually read (1—1,1—-2,1—3
efc.), whereas in the following ranges from 2 to 10 the second digit has to be
counted off.

Each secondary interval is again split up inio tertiary intervals separated by the
shortest division lines which mark the third digitin a number. Here the beginner
has to be watchful, as we shall see.

The progressive shrinkage of the scales makes it necessary to employ three
systems of subdivision for the smallest, i. e. the tertiary spaces, to avoid crowding
of the lines in the region toward the end. Therefore all tertiary division lines
will only be found between 1 and 2. In this first section of the scale the reading is,
therefore, comparable fo the reading of a rule with metric graduation, so that
all numbers can here be actually read to the third digit. (Fig. 4).

1007 10‘;95 !2?0 1355 3573 1847
R N T O T R e G W T R
1 ] 12 13 14 15 16 17 18 19

Fig. 4 Reading in the Range 1 to 2

For reading practice now set the cursor hair over the line labeled 1 and ad-
vance it, line by line, counting off 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113 etc. The fineness of the cursor hairline allows splitting each interval
accurately in two. With a litile practice even smaller fractions can be located
with fair precision by visual estimation.

For practice, after reaching 131, split the interval separating this line from the
next, 132, by inspection and count off: 131.0, 131.1, 131.2, 131.3, 131.4, 131.5 efc.

The fourth digits can be easily estimated as the sample settings in Fig. 4 demon-
strafe. Do not overlook the zero when reading the intervals immediately follo-
wing the labeled marks (see 1007, 1095, in Fig. 4).

Note how much narrower the intervals have grown as we approach the num-
ber 2. This makes it necessary fo cut the system of subdivision to two tertiary
intervals between 2 and 4.

[n this sector only every other interval is marked (Fig. 5). Hence only the third
digit of even numbers can be read on the lines and all uneven third digits must
be estimated by inspection in the middle of the respective interval. After a litile

203 2155 235 283 302 3495 379
L ST HHPHiﬂHHﬂIHH!‘:HEgiﬂN[iHugEEHWH]EiuﬁmgaNmﬂﬂmglﬂﬂﬂﬁuﬂﬂﬂlﬂl”
2.5 3l y 4

Fig. 5 Reading in the Range 2 fo 4

practical experience you will even be able to estimate the place for the fourth
digit fairly accurately.

Erom this it follows that the even third digits in any number can be counted off on
the lines: 200, 202, 204, 206, 208, 210, 212, 214 etc. The uneven third digits are
located by interpolation midway between the division lines: 203, 205, 207, 209,
211, 213 efc. Fig. 5 shows several examples in this range (203, 235, 283, 379).

4075 4 5225 6 695 75 801 946
pup g gugﬁsmzmv nhnuunHnuunnunuMﬂumnmkguunﬁhuguannﬂnBupumzgnﬁugumﬂuﬂugsmﬂmugunuuiﬂu‘igrmunq
4 5 6 7 8 9 10

Fig. 6 Reading in the Range 4 to 10

In the range from 4 to 10 the tertiary intervals advance still more rapidly viz. by
5/100th of the primary intervals so that we can count off on the lines: 400, 405,
410, 415, 420, 425, 430 and so on. Intermediate values are located by eye-judg-
ment. Midway between 400 and 405 we can place 4025, a little to the left thereof
402, and a little to the right 403. Conversely the middle of the next inferval
gives 4075 and so on. Fig. 6 presents a selection of examples.

3. The Principle of Slide Rule Calculation

Mathematical operations on the slide rule are performed by the mechanical
addition or subtraction of two segments of graduated scales. This method is best
demonstrated by two millimeter scales sliding lengthwise on each other.

3
L AR
! v
(0} 1 2 3 4
!imhuu;mllHlIEHHEIMIEHHIIIHI
lHHHHH]mnllauilmaunlllmpmiululmnl
0 1 2 3 4 5
~ v
2
W v

5
Fig. 7 Graphic Addition by Use of two Ordinary Scales

Fig. 7 shows how a mechanical addition is made with two such scales. When, for
instance, the tip 0 of the uppermost scale is movedso as to coincide with the value
2 of the lower scale, we shall find the sum 5 under the value 3 of the upperscale.
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Subtraction is the same process in reversed order, i. e. the length 3 of the upper
scale is deducted from the total length 5 of the lower scale. It follows that, by
simply setting the value 3 over 5, we can read the answer 2 under 0 of the upper
scale.

Multiplication and division by use of the slide rule is exacily the same process as
that described above, except that we are now dealing with logarithmic lengths,
so that by adding or subfracting two segments of line we actually accomplish
either a multiplication or a division. In more refined form the above discussed
principle of fwo separate scales is embodied in the slide, movably tongued and
grooved to the body of the rule. A cursor is provided to facilitate setting and
reading of values to hairbreadth accuracy.

4. Explanation of Working Diagrams used in the Solution of
Examples

In the following text an easily memorized method of explanation will be emp-
loyed, so as to show the step-by-step operations in the respective computation
with greater clarity than in the customary form of a facsimile slide rule. Parallel
lines bearing their corresponding marginal labels represent the scales and the
following symbols will make the diagrams very easy to interpret:

Initial setting ©
Each subsequent setting @
Final result
Setting or reading ®
of an intermediate result 24
s
Reverse the rule S X
Directions and sequence of movements el
Hairline of the cursor
-
Fig. 8 shows how an example will DF 45 765 T
appear in the diagram. 3 %' gﬁ ﬂf
CiF X
N = a5l 5 cr 7
—— X 1./ =/ 1g. x
73 g-9) . z
. o (8] o7
intermediafe result 27 1 6 = 4.5
Fig. 8
5. Multiplication
(two lengths are added)
Set the left 1 (called the left index) of o
scale Cto coincide with the value 18on - @ 1404 e
scale D. Now move the cursorto 13 on CF za Tx
scale C and find the product 234 under  cif i
the hairline on D. One essential feature o :
. . . x
fo the slide rule consists in that we can , 05 oo
perform as many other multiplications o 7] 234 53X
by 18 as may be required without
h ing the initial setting. Fig.9 18 x13 =234
changing the initial setting 9 bR
Fig. 9 indicates two such further ope- 18x 7.8 =140.4
rations, viz.
8

It will soon be observed, as in 18 x 7.8, that sometimes the slide projects so far
beyond the end of the body scale that no reading can be taken. The simple
remedy then consists in setting the right index of the slide over 18 and shifting
the cursor to 7.8.

This end-for-end exchange of the indexes is rather troublesome and it can be
shown that the upper pair of scales CF and DF offer an easier solution. By
studying the rule you will find that the index 1 of scale CF is also matched with
the value 18 of the DF scale and, therefore, we can continue reading on these
scales where the lower scales break off. In fig. 9 is shown how the example
18 x 7.8 = 140.4 can be solved by setting the cursor to 7.8 on CF and reading
the result 140.4 on DF. This procedure is always applicable provided that the
slide does not project out of the body by more than half iis length.

Examples:

3.04 x 2.68 = 8.15 1738 X 447 =777
3.04 x 405 =12.31 10.03 x .2484 = 2.49
3.04 x7.27 =22.10 739 x 655 = 484
3.04 x 8.025 = 24.40 1483 x .039 = 5.78
981 x7.05 =69.2 34.76 x .0324 1.126

2.208 x .0213 = .0470 433 x 895 =388

It is often advantageous to make the first setting with the index of the CFscale
placed opposite the multiplier on DF, because in this case there is no need to
decide whether to start with the right or the left index. Furthermore, in all
seltings made with the upper pair of scales no more than half a slide length will
ever project beyond the body scales. This means thai the product can always be
read on either the upper or the lower pair of scales, often on both scales simul-
taneously. It is advisable to repeat the previous exercises by first starting with
C and D and next with CF and DF. In this way you can appreciate by experience
which type of setting is the better one.

é. Division

(two lengths are subtracted, multiplication in reverse)

Set the cursor over the value 2620 on
scale D and draw 17.7 on C into align- DF G
ment so that both values are opposite ¢ Tx
each other. The quotient 148 then ap-  ¢yF J

pears under the left slide index. o 7?(
Notice: ¢ p 12.7 X
It is worthy of note that when this Z OB i”m £
manipulation is completed the setting Fig. 10

of the rule is also identical to that for 2620 = 17.7 = 148
the multiplication 148 x 17.7 = 2620.  Roughly: 3000 + 20 = 150
The only difference between multipli-

cation and division is the order of the setfing and the reading.

In the problem 582 —- 7.23 = 80.5 the quotient will be found under the right
slide index. It follows that in division no end-for-end switching of the indexes will
occur. Later in this text it will be demonstrated how this feature can be usefully
employed. The following chapter also contains a reference to the same subject

9



Examples:
378 - 45 = 840 6.25 — 1328 = 47.1
53 = 7.45= 712 914 — 1629 = .0561
315 =228 = 1.382 180 =~ = = 01745
402 = 26.66 = 15.08 7+ 180 = 01745

The exercises in division, too, should be done, first with the C and D and then
with the CF and DF scales. When the problem is set on the upper pair of scales
the values are arranged in fractional notation, with the numerator above the

denominator, thus:

3.78 “
%5 40

The answer can be read both over the index of CF on DF and under the right
index of C on D.

7. Multiplication and Division Combined

a

In problems of the type x.b division
c

is usually taken first, because the slide
rule is then always ready for the
following multiplication.

The intermediate result of the division Fig. 11
345 = 132 = 2.61 can be ignored and 345 % 22
the cursor moved directly to the value 132

22 on scale C, opposite which place 300 x 20
the final result57.5 appearsonscaleD. Roughly:

8. Proportion

Problems in proportion are particularly easy o solve by slide rule. Thejuncture
between the slide and the body may be regarded as the dividing line in the ratios
written in fractional form

From old habitrule-of-three problems are usuallysolved asdiscussed in chapter?.
But the slide rule greatly facilitates and simplifies solution when the problem is
changed fo proportion form.

The method is probably best shown by an example: 9.5 pounds of a commodity
are worth $ 6.30. How much for 8.4 pounds? In rule-of-three form the solution
would be

290 4 =55
9.50><8‘ = 5.57

10

Stating the same problem in proportion
form we write

T 1630~ -1 ilir

By placing the given weight 9.5 on the X
DF scale opposite the price 6.30 on CF g % %‘Mi j?b
the ratio of any number on C or CF 'S
tothe number opposite iton D or DFis  Fig. 12 Proportion

constant throughout the entire range

of the scales. Accordingly, when the first setting is made as marked by arrow-
heads in Fig. 12, then, opposite all weights set on DF and D we can find the cor-
responding prices on CF and C, including the unit price per 1 pound which, in
a case like this one, is often of particular interest. Against 8.4 pounds we read
the price $ 5.57 as the answer to the present simple problem. A number of
further weight/price relations are marked in the above diagram:

10.6 pounds are worth $ 7.03 (in scales CF/DF)
3.8 pounds are worth $ 2.52 (in scales C/D)
2.8 pounds are worth $ 1.86 (in scales C/D)

An interminable sequence of other ratios can also be instantly read:

b 1o 840 1106/ 0IRBIE. (28, 50001

T3 557" 7030 252 1:56WRI0663 it
Application of the principle of proportion has the important advantage that one
is not too strictly bound by inflexible calculating rules as in the previously

b
discussed methods. It makes no difference whether the given ratio is set-E or aas

long as the required terms are read in the same vertical order on the scales.
In the above example 6.3 might be set on DF against 9.5 on CF and the cursor
placed over 8.4 on CF in order to read the answer 5.57 on DF.

Many problems in everyday practice can readily be stated in proportion form
for a simplified and more fluent solution by slide rule.

9. The Reciprocal Scales Cl and CIF

The Cl scale has the same system of subdivision as the fundamental scales C
and D, except that the graduation advances in the opposite direction and has a
red numeration as a warning signal against reading errors. For any value of x
set by cursor on the C scale, the Cl scale produces the reciprocal 1/x of the
number concerned, as the mathematical symbol at the right-hand margin of Cl
indicates. Equally important, too, the reciprocal of any value on the Cli scale is
produced on C. So, for instance, over 5 on C we read 1/5 = 0.2 on Cl, while
under 4 on Cl we find 1/4 = 0.25 on the C scale.

There would be no point in providing a special scale for the sole purpose of
determining the reciprocal of a number. lis real usefulness consists of a drastic
reduction in slide and cursor movements where complex problems are con-
cerned. Consider that

4 = 5 can be changed to the form 4 x 1/5, and

4 x 5 gives the same as 4 = 1/5

1



The second two forms of notation certainly look a bit unusual but they constitute
the basis of an extremely efficient expedient in slide rule work because they
enable one fo change any division into a multiplication, and vice versa. Let us
indulge in a little “juggling game’ with oversimplified problems to demonstrate
the interaction between an inverted and a normal scale and the advantages
to be derived from the inclusion of the Cl scale:

1) When the cursor is placed over 6 on D and 2 on C is drawn under the hair-
line, we have the customary setting for the division 6 — 2 = 3. But if we now
leave the cursor in place and shift the slide so as to bring the value 2 on the
Cl scale in line, we perform the multiplication 6 x 2, wherein the product 12

¢l T Lo £ :

-— T X : W X
c &' 2 x C @ x
03 (013 x o (O I@ 51
Fig.13a Fig. 13b

appears under the front index of C, exactly as in the customary process of
division. As a matter of fact we actually have performed such a division, viz.
that of 6 — 0.5 = 12 because, simultaneously with the 2 on Cl we have auto-
matically also brought the reciprocal value of 2, i. e. 0.5, on the C scale under
the cursor hair (multiplication changed to division, Fig. 13a-b).

¢ J
: iy TR
7 i
D 2 3 X
Fig. 14a Fig. 14b

2) If we now keep the index of the C scale over 12 on D and shift the cursor to
4 on C, this means that we are multiplying 12 X 4 = 48 by the conventional
process. But if we set the cursor to 4 on the Cl scale instead of C, we find the
quotient of the division 12 — 4 = 3 on D. This is the explanation: Since under
4 on Cl the reciprocal value of 4, viz. 1/4 = 0.25, is located on C, we have in fact
multiplied 12 x 0.25 = 3. In other words we have changed a division into a
mulfiplication.

The conclusion to be drawn from the foregoing demonstration is that there are
always two kinds of seftings, for any division or multiplication, from which a
competent slide rule user will always choose the more suitable one in order to
maintain the rhythmic alternation between division and multiplication.

The foregoing description of the relationship existing between C and Cl also
prevails between their folded counterparts CF and CIF. In order to gain a clear
understanding of their part in the scale assembly it is worthwhile repeating
the above discussed experiments with the group CF/DF/CIF. From studying the
processes explained in the foregoing text with due attention, it will now be clear
that the inclusion of the CIF scale is the logical final link in the scale system.
Slide rule users with experience in the proper use of the folded scales will use
the CIF scale as often as CI.

12

In the process of choosing the proper
setting for each successive step in a

s ¢ DF,
computation we may freely switch o

; ;1’5.} K
2.24 X

back and forth between C/D/Cl and !
DF/CF/CIF, as witness two examples: o g;x
15.3 & 1 L c ;
PR2% o BT D I b4
& @
E'e‘"iirlgf :")Y 52'\,3240‘:]"”85”{2256 thr:g Fig. 15 Computation with CF/DF/CIF
answer 1.29 on DF.
1.5 X 79 x 1.69 = 20 e &5
Perform the first multiplication gf i
1.5 x 7.9 in division form with 1.5 on C}F i
D opposite 7.9 on Cl. The third factor s
can then be set immediately by cursor &/ wm X
shift to 1.69 on C, where the final pro- E £.69 ,f
duct 20 appears on D. - ﬁm e

From the foregoing detailed studies
these simple rules can be formulated:

Fig. 16 Computation with C/D/CI

1) Whenever an intermediate result in the course of a computation appears
under one of the slide indexes and the next step is a multiplication, set by cursor
on C or CF; when the next step is a division use Cl or CIF.

2) When an intermediate result appears under the cursor hairline on one of
the body scales D or DF and the next step is a multiplication, shift the slide so as
to bring the multiplier on Cl or CIF under the cursor line and read the answer
under the respective slide index. If, however, the next step is a division, solve in
the customary division form with C or CF in order to get the quotient under a
slide index. In either case the slide is correcily adjusted for the next step in the
short-cut method of alternate division and multiplication.

10. The Folded Scales CF and DF

We have already had occasion to use these scales in multiplication and division,
in which class of computation they are principally employed (See chapters 5 to
9). The folded scales are identical to the fundamental scales, except that any
location on one type of scale is laterally displaced by the value 7 = 3.14159
relative to the other scale. This means that the value 7z on the folded scales is
exactly matched with the indexes of the fundamental scales. Consequently the
graduation runs from s past 1, in about the middle of the rule, to 7 at the right
extreme. There are short extensions of the graduations at both ends for greater
convenience.

The index 1 of the CF scale is always aligned to the same value on DF to which
the index 1 of C is aligned on D. It follows that we can also begin a calculation
with the CF/DF scales and with advantage, too. There is no more need to decide
between two indexes for the first setting.

The two scale pairs CF/DF and C/D form a feam working in perfect unison.
Whenever the point is reached where one pair fails fo give the answer, the
other pair takes over. No more “resetting the slide”.

The yellow strips on the slide serve as a precaution against errors, since the slide
scale C moves over D but CF moves under DF.

13



10.f Tabulations avoiding Resetting the Slide

y=129x Ca : ‘
[ 17.] 34 | 50 |5 10 eF e @m0

X
v [ %93 | 100 | 145 | 290 i ™

For x = 5 the upper pair of scales CF
and DF provides the answer without
resetting the slide.

L aa ww V

BBl ool e e

loarr Tt ke cIE L

!

x 743 | 292 | 1567 g‘ 7 7 2%

y 3795 | 966 | 180 i inaeE e
| Fig. 18

Ve

X 1 | DF ms 7x

Y maror a0 X CF iz x

182 182 AR i

x e N cr L

(o 18,2 3

y | 742 | 646 RE g Sares x
Fig. 19

10.2, Direct Reading of Multiplications and Divisions involving n

Another advantage of this folded arrangement consists in simplifying various
computations involving the factor 7. It will be clear that any switch-over from
D to DF automatically supplies the product of any number set on D multiplied
by the factor z:. Conversely then

the division by s is achieved by
following the opposite course. gﬁ 55-46 1405 i
Typical Problems: &l 7=
Circumference of Circles C = dn ¢ ¥
Angular Velocity w=2fn % Rz §“7 i
Area of Circles A=r2g : pS
Fig.20 x X mzand x =+ =

The first two formulas can be com-
puted with one cursor setting, whereas
we must first perform the multipli- ¢

T x
®0.506
0.01516

cation r X r with the scales Cand D = ¢F Jix
to find the circle area (see also chap.  ciF 7%
16.2). o o — 6 -
17397 = 5.46 —— =447 g = <
z | ik
L

=2 = 548 01516 BpaolE i

5.73 N X7 el R T
14
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44. The Scales A, B and K

\:ﬁ,i Squares and Cubes, Square Roots and Cube Roots

When the cursor hairline is set to any valve of x on scale D, x2 can be read on
scale A and x3® on scale K. In the opposite order the switch-over from K to D
furnishes the cube root and from A to D the square root.

Examples:
a) 22=4 28 =38
K
b) 3.272 = 10.7 3.278 =35 A
B 3 f
Y9 =3 27 =3 :
)1/ 14 i
g o 2
d) Y51 =714 /364 =714 =
When it is clearthatthe rootconcerned o 2 ?3 izzv fzu -;{
will fall within the range 1 0 10 no spe- -
cial calculating rules need be applied.  Fig. 22

This is the case when the radicand of ‘

a square root lies somewhere between 1 and 100 = 102 or the radicand of a
cube root between 1 and 1000 = 102. In all other cases it is necessary to reduce
the radicand to the more handy form of a power of ten notation.

Exercises:
2 2 h e gy R 24 5
1/3200 = ]/100 X 32 = 1/102 X 32 =10 x ]/32 =10 x 5.66 = 56.6

3 3 3
s 813 1 58 q
/1813 = Vﬁcﬁ:ﬁ X /181.8 == x 5.66 = 566

3 oS 3
Viztoi= "]/ HO W/ 7708880 o 0
1000 — 10 * ¥ 10

3

3
Y1795 = 10 x )/1.795 = 12.15
2 2 3
/3740 = 10 X )/ 7.63 = 1.970

2 3 3 i
10 x /279 = 16.70 1/325:% x V/28 = 304

o 2 el L
V242 = 11—0 X /242 = 492

37.40 = 61.2

=
3
I

2o o 2
1/ 0948= 75 % 1/9.48 = .308

441 =7.61

19.2' Multiplication and Division with the A and B Scales

Multiplication and division can also be done by using the scales A and B by the
same process as that used for C and D, but the precision obtained will be some-
what less refined. In many problems beginning with a squaring operation
itis an advantage to be able to continue the computation on the A and B scales.

It is recommended to repeat the examples given in the chapters 4 to 7 with the
scales of squares A and B for practice in the use of these scales and in order to
judge the accuracy here obtainable as compared with that of the fundamental
scales.
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12. Trigonometric Functions

When the hairline is set to the angle on scale S, T or ST, the respective function
can be read on the D scale. By reversing the process we obtain the angle corres-
ponding to the given function. Angles are given in degrees divided decimally.

The slide rule can only supply the functions of angles.in the first quadrant
directly. Use the following table to reduce angles of other quadrants to the

first:

+ o 90° + o 180° + o 270° + «
sin + sin o + cos a F sino — COS o
cos + cos o F sin o — COS o + sin o
tan + tan o F cota + tan o F cota
cot + cot F tan a + cot o F tan o
12§ The Sine Scale S extends
& SERZN WS WS
from 5.5° to 90° and also contains the 4 x2
cosine values in red numerals, running g x2
backwards from right to left. All sines ¢ <tfan
reac! on the funfia‘rp?’nml scales must ST —arc
be given the prefix “0”. = - 3 & d
: s 75 26 30 428° o
Examples: a. sin 30° = .500 red] (red]
b. sin 26° = .438 c 0950 0438 Q0500 ©0733 X
c. cos 75° = .259 D [ X
d. cos 42.8° = .733
Eig. 23
122 The Tangent Scale T has
b a (3
black numbers for angles from 5.5° T T T 5
to 45° and in opposite progression g iz
from 45° to 84.5° in red colour. Since r 814° L 3® 6025° _otg
the tangent of any angle o0 < 45° is al-
ways smaller than 1, the correspond- &7 i ~arc
ing functional values on the D scale ¢ < 5in
take the prefix “0”. ... c 1 & X
For angles oo > 45° apply the red & %’ | ’:
numbers and obtain the function from &/ l X

the red numbers of the Cl scale in con-

Slide in ‘“‘neut

sideration of tan o« = 1/tan (90° — ).  Fig. 24 ral position”

These values are always larger than 1.

With the slide “in neutral”, readings

can also be taken from scales D or DI. b -

Theformulacota=1/tan o governsthe 4 220 DE L X

rule for finding the cotangent of an & I xR deE 5l

angle. 7 Bl <tg Bl e

Therefore read the cotangents on CI ST ghore it lgx

for anglesa < 45° and on Cfor angles g —| <sin/ 1\ cl L

o > 45° (oron Dl and D, respectively). ¢ __ | x g \C .

Examples (see Fig. 24) 0 -

a. tan 14° = .249 Fig. 25 Slide in operational position,
cot 14° = 4.01 read on rear face

b. tan 81.4° = 6.61 tan 81.4° = 6.61

c. cot 68.25° = .399
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When the function is given proceed in the reversed order fo obtain the angle

arc sin .783 = 51.5° arc tan .764 = 37.4°
arc sin .967 = 75.2° arc cot .983 = 45.5°

12.3 The Scale ST (Small Angles - Large Angles - Degrees +——> Radians)

This scale includes angles between 0.55° to 6° and is so designed that for any

angle o set on its graduation the C scale gives the radian measure % X o of this
angle.

For practical purposes the sines, the tangents and the radian measure of angles
smaller than 6° are so nearly alike, that the ST scale serves equally for all
three functions. Conversely, foo, for the cosines and cotangents of angles larger
than 84.5° which are not included in the S and T scales, using the complementary
angle in this case. Expressing the foregoing in formula form we have:

sin o = fan o = cos (90° — o) = cot (90° — o) ~-2_ o = 01745 o in radians

180
Examples: sin 1° = tan 1° = cos 89° = cot 89° = % = .01745 rad on C
i 180°
e = — = .
cof 1 i = 57.3 on Cl

sin 3.8° = .0663, cos 88.2° = .0314, tfan 2.74° = .0478.

The cosines of smali angles and, conversely, the sines of large angles cannot be
found directly with the slide rule because the cramped interval between 80°
and 90° (0° and 10° in red) of the S scale makes it impossible fo place the angle
accurately. When these are involved the solution requires the use of the series
progression

o
cosop = 1 ——

2
.017452

(o in radians)

cos 1° =1 =1 — .000152 = .999848.

Note that the required square of any given angle set on the ST scale is directly
readable in radians on the B scale. To find the angle corresponding to a given
cosine reverse the process.

124 Conversion of Degrees to Radians (and vice versa)

Scale ST is a duplicate of the fundamental scales, modified only in so far as the
one graduation is displaced laterally by the volue% relative to the other

graduation. Therefore by following the cursor line from scale ST to C we
achieve the conversion of degrees to radians, and vice versa. This form of
calculation is applicable not only to the small angles discussed above but to
large angles as well, by virtue of the decimal subdivision of the degrees, in

consideration of the fact that the displacement of the graduations by o

180
simply a constant multiplication factor.

Any seiting of an angle « may also be regarded as representing .1, 10,
100 o etc. and the decimal point in the radian is then placed accordingly.

17



For instance: JA° = 001745 radians
10° = 1745 radians tan 89.5°
100° = 1.745 radians

1 1

T Ty 5

When small angles are given in terms of minutes and seconds they can be
o

3 1 1°
converted to decimal parts of the degree as foll T 1= (s
p g ollows % and 1 3600.

"52.5," The Gauge Marks for Minutes ’ and Seconds ”/

The gauge marks ’ and ” on the ST scale give a means of direct computation of
radian equivalents when the angle is given in minutes or seconds. They represent
the conversion factors:

w
5 5
180 T =£tan
—— X 60 = 3438 for minutes and
T ST <£Arc |
180 s =i
= X 60 x 60 = 206265 for seconds. ¢

‘minules goug 1 X
D 22 ® 640 x

Fig. 26 22’ = 00640 radians

¥4 7
: . o o
Hence: o in radians = — =
minutes gauge  seconds gauge

n reversed order: &' =« rad X minutes gauge ’

o’ = & rad X seconds gauge

Examples:
Vet 2200 : 20

22 = T .00640 radians (Roughly 000 .006)
, 380 ; 400

80" = e = | Sootat

3 206265 001843 radians (Roughly 200000 .002)

.0045 radians = .0045 x 3480 = 15.8". (Roughly .005 x 3000 = 15)

The gauge marks for minutes ” and seconds ” are a useful aid in solving circle
sectors for radii r, arc lengths b and central angles «. :

0% Xyl

b
« =— X gauge mark b=——
r gauge mark

Examples:
o= 0 X minut " =458
=75 inutes gauge " = 45.

4 7
e BBy it
seconds gauge
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13. Trigonometric Solution of Plane Triangles

The law of sines is a convincing ex-
ample of the slide rule’s efficiency in
solving problems in proportion.

a b (d

sinoe  sinff  siny

By setting the given angle on Sopposite
the given side on D, the other ratios are
immediately in coincidence i. e. the
angle corresponding io the given side
or the side opposite the given angle
is directly available.

™ ok

(5]
~

onn

Fig. 29 Setting for the Law of Sines

In practice this form of computation is mostly concerned with right triangles. In
this particular case y = 90° hence siny = 1, and @ = 90° — f, 8 = 90° — o.
The law of sines is therefore rearranged to the formula.

a
and further: tan o = e

Depending on the given elements there are two basic operations viz.

A. Given: Any two parts (except case B).

B. Given: The small sides a and b. ‘ e
Example for Case A: g :
Given: c =5, b =4 T
Required: a, o, f st
5 4 3 s 53.15%(red)
T T sin53.15°  cos 53.15° g 53
: - ‘
p = 3315 Fig. 31 Given the Hypotenuse
o = 90° — 53.15° = 36.85°
a=3

Set the slide index (sin 90° = 1) of the C scale over the hypotenuse 5 on D. The
required values a, « and 8 can now be read by merely moving the cursor.

Over the side 4 on the D scale find 8 = 53.15° on S (black numerals). It makes no
difference whether the next operation required to find the side 3 on the D scale is
the setting of the cursor fo « = 90° — 53.15° = 36.85° on scale S with the black
numeration, or its direct setting to the cosine 53.15° on the red numeration.
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When the given elements are one side and one angle, the first step consists in
aligning the side to the opposite angle; the following operations are then as
ouilined in the above diagram and the hypotenuse is found under the slide
index on D.

In some cases it will be found convenient to use the DF scale instead of D to

avoid end-for-end changes of the indexes. All sides then appear on the DF scale.
The method itself is unchanged.

Example for Case B: Given: a = 3, v
b = 4, g | x2
To find:c, «, . a2
p 7 £ ~ttan
First solve for o from the given sides:
ST ~tarc
o %
tan ¢ = — = .E_ S Ho) - Sin
4 ¢ 1 T
or, better, in the proportion form: b 3 £ SRR
4 3
T = fan o Fig. 32 Given the Two Sides

Setthe slide index over 4 on the D scale and move the cursor to 3 on D. Read the

angle o = 36.9° by following the hairline to scale T. The next step is to find ¢ by
c 3

inat e Ciae O B

applying the law of sines in T

the value 3, we now shift the slide so as to bring the angle 36.9° on scale S under

the hairline. The answer ¢ = 5 can now be read on D under the slide index.

In cases where o« > 45°, with a > b, the computation runs as described above
and invariably. begins with the larger of the two sides. In this case, however,
we must read the complement of the angle (red numerals) on the T scale and
consequently set the cosine (red numerals) on S in the next step.

In order to clarify this kind of computation and avoid mistakes it is useful fo
visualize the particular triangle in your mind’s eye.

. Since the cursor is already located over

Examples: Given the right triangle in which:  Solution:

a = 10.63 b =19.8 o = 28.23° ¢ = 22.47
a = 46.7 b =16.5 o =7053° c =495
c =782 a = 22.7° a = 30.2 b =723

The two methods of solution for right triangles discussed in the preceding text are
of particularsignificance in problems involving coordinates, vectors, or complex
numbers. Such problems may require conversions of rectangular coordinates
to polar coordinates and vice versa.

Examples: y
Z =45 + j1.3 = 4.68/16.13° r oy
Z = 6.7 [49° = 4.39 + | 5.05 20 ()

ax A
Fig. 33 A x, A ye—>r, p

These conversions are very often en-
countered in electrical engineering. [
In the component form Z = a 4 jb
the values are easy to add or sub-
tract, whereas the vector form L
Z .= r[gpis the more suitable for multi-
plication, division and finding roots ¢ 90°|
and powers.

a
Fig.34 Z =0 +jb=rfp
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i1%4.) The Log Log Scales LLo-LL3 and LLoo-LLo3

All Log Log scales are used together with the fundamental scales C and D.
The et *.scales LL0, LL1, LL2 and LL3 cover the range 1.001 to 100,000 and the
e™X-scales LL0O, LLO1, LLO2 and LL03 the range .00001 to .999.

The et and e™-scales are reciprocal to each other. Reciprocals of numbers
< 2.5 can be read with a higher degree of accuracy than can be expected when
using the scales Cl and CIF, e. g.: the reciprocal value of 1.0170 is .98328.

Attention: The Log Log scales supply immutable values, either whole numbers
or numbers with their fractional parts in decimals. This means that when we
read 1.35, this is the only value concerned. It is not decimally variable as
in dealing with the fundamental scales.

141 The 10th, and 1000th Powers and Roots

The Log Log scales are mutually coordinated in such a manner that, in passing
from one scale to the adjacent scale, the tenth power or the tenth root of a
number set on the one scale can be read on the neighbouring scale, depending
on the direction in which the reading is made.

The examples depicted in Fig. 35 will make it clear how the tenth and hundredth
power or root of a given number can be determined by the simple process of
following the cursor hairline to the appropriate scale. For greater clarity the
scales LL00 and LLO are here shown grouped together with the other Log Log
scales on one face of the rule.

Examples:

10
1.0151 = V1.o15 = 1.00149

1.015' = 1.015 | 2000 —@- 5 _ 000t
1.0151° = 1.1605 LLot 2= el
1.0151%0 — 443 Ltez G

1 ilo3 ex
—— = 1.015—100 _ 92957 x
1.015100 oe | e
il 1.015—10 8617 5 | x
10q510 = TR f“ a2 lz 4430

1 all b 11605 0%
——— = 1.015~1 = 98522 iz G
1.015" 1 G i

1 i o0 — o B0 10018 _ oqo0t
1.0151 1°_.7 i1

V1 1 Fig. 35 Reciprocity between the LL scales
= 1.015"" = 99851

Other reading examples based on the range of numbers in Fig. 35.
10 100

Vm =1.1605 9852210 — 8617 }/2257 = 98522 1.001 491000 _ 4 43

Examples such as the above will hardly ever arise in practice. They are used here
to make the system governing the Log Log scales easy to comprehend.
142 Powersy = a*

Raising a number to any power is done exacily as multiplications are performed
with the fundamental scales.
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Procedure:
PN

a) Use the cursor to set the index of scale C to the base “a’’ on the appropriate
LL scale.

b) Shift the cursor hairline to the value of the exponent on C.

c) Read the power y under the hairline on the corresponding LL scale. (See the
chapter “Reading Rules”.)

Whentheindexoftheslideissettothe base “a” we obtain a completetable of values
corresponding to the function y = a*. Fig. 36 depicts the setting of the slide to be

made for the function y = 3.2% showing the cursor aligned fo the exponent 2.5
and its decimal variates.

Examples: Reading on scale e T T

3192505 iela LL3 Lo~ et s
3225  — 1338 LL2 Lior o
32925  _ 102956  LL1 i ol
3.20025  _ 4002912 LlLo ;SL;’ ;:

32—25 _ 0546 LLo3 G A

OV = RTAT6 i Loz bt i

3.2-0% — 97134  Llot i o5
32—9025 — 997096  LLoo i 0,01
3.231 = 36.8 LL3 LLo ======~ gm —————————————— @000t
32036 — 4520 LL2 o L

Fig. 36 Powers

Reading Rules:

a)r For positive exponents set and read in the same group of scales LLO—LL3 or
LLo0—LLo3 i. e. use scales having numerals of uniform colour. For negative
exponents we must swifch over from one group of scales to the other (alter-
nating the colours).

b) In conformity with the labels given at the right end of each scale, read on the
adjoining scale with the inferior label for each place that the decimal point
in the exponent is moved to the left. (Cf. example Fig. 36.)

c) When the base is set with the right slide index, all readings must be taken
from the adjoining “higher” labeled scale.

When 0 < a < 1 the powers with positive exponents are found in the group

LLoo—LLo3 of the Log Log scales, and with negative exponents in the group

LLo—LLa.

»

Lioy : T 00t

LLo2 0685 36 e0lx
Examples to clarify the reading rules: % %

OF "X
68527 = .36 6e52l =278 BEA Y i e

2.7 _ —2. 9 ? A

14627 =278  1.46—%7 = 36 i .

Liz 546 }.‘\276 - e0ia

Lis T €007z

i )

Fig. 37 Left Index of C over Base
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Figs. 37 and 38 show the same exam-
ples, but in Fig. 37 the slide is set with
the left index whereas in Fig. 38 the
right index is used.

we 5146 e9s

LLy 20078

Fig. 38 Rig#:t index of éi@w@r Base

Examples: 1.021%% =  1.0512

C14627% = .5485 34 =  .0081
213>3 = 550 3—4 =123
2133 = 1.493 4928 = 1357
213—5% = 6698 4912 = 405
8537 = 2740 4912 = 918
254~%6 — .000223 9331 = 0.691
1.0023%7 =  1.00854 9351 = 1.448
e~ = L0432 96257 = 709

143 Exceptional Cases of y = a*

Since the range of the Log Log scales is restricted, cases will arise where the
exponent is either too great or too small to permit direct reading of the power.

1431 y > 100,000 and y < .00001

When the power corresponding to a base with a large exponent is greater than
100,000 or smaller than .00001 the alternative consists in breaking up the
exponent into several factors.

Example:
34419 = 34461647 = (31462 x 3.147

= 9552 x 108 x 3.02 x 10% = 2.76 x 10°
For expressions with negative exponents the procedure is, of course, analogous.

1432 .999 <y < 1.001

When for a small exponent x, the value of the power is either smaller than 1.001
or greater than .999 the answer is obtained by use of an approximation.

From the series expansion

+ 2 3
ai e + ;I—)E'- logea + %. (logea)? + ;.(_' (logea)® + ...

can be derived afx ~ 1 + x loge afor | xlogea| <1

If the index of C is set opposite the base value a on LL by aid of the cursor line,
logea on D (without reading its value) can be multiplied by x. The product
added to 1 or, respectively, subtracted from 1 gives the power. The smaller the
exponent the more precise will be the result.

Returning to our previous example with the base 3.2 (Fig. 36, we can now
continue, e. g.:

3200025 4 4 00025 X loge 3.2
~ 1 4 .0002908 = 1.0002908
3200025 4 _ 0002908 = .9997092
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When the exponent is still further reduced through shifts in the location of the
decimal point, the answer only varies in respect of the number of ciphers or
nines immediately following the decimal point.

3.2:000025 _ 4 00002908

1433 .999 < a < 1.001

When, in the type of problem y = a*, the value of the base is approximately 1
and within the range 0.999 < a < 1.001, the solution is worked out by use of
the approximate formula
=1+ n* =1+ xloge (1 + n) loge (1 & n) = %+ n (for|n|<<1)
(1 + n)* =1 + nx (for nx<< 1) (1 + n) =1 F nx (for nx < 1)
It is immaterial whether, in the range discussed here loge (1 4 n), is sef-inscale
LL or the value n in scale D, in consideration of loge (1 & n) = 4+ n. The smaller
the magnitude of the value n the closer the correctness of the approximation.
It follows, then, that where the LL scale breaks off scale D can be used as the
continuation of the LL scale, in this case substituting & n for 1 + n. When the
index of the C scale coincides with n on the D scale this setting is practically
identical with the setting loge (1 + n) within an imaginary additional LL scale
covering the range 1.0001 to 1.001 or, respectively, .9990 to .9999 and so on.
The computation then continues by looking up the power as previously dis-
cussed. Actually any answer read on the D scale is derived from a simple
multiplication but has to be complemented by the addition of “1”* or the sub-
traction from ““1””, as the case may be. When, with growing exponent, the power
falls within the readable range of the LL scales readings are taken directly from
these scales.

Examples: 1.00023%7 = (1 +.00023)%7 = 1.000851
Set on scale D, read on scale D and add 1

1.00023% — 1.00855
Set on scale D, read on scale LLo

9997737 = (1 — .00023)37 = .999149
Set on scale D, read on scale D and deduct from 1

9997757 = 99154

Set on scale D, read on scale LLoo

1.19-31 = 1.0554 (Seton LL2, read on LL1)
119981 — 1.00540 (Seton LL2, read on LLo)
1190031 — 1.000538 (Seton LL2, read on D)
1.0048"9 = 1.00912 (Set on LLo, read on LLo)
1.0002142 = 1.000882 (Seton D,  read on D)
9997942 = 999118 (Set on D, read on D)

L Powefs y = ex

When the indexes of the slide and the body scales coincide the rule is adjusted
to the equation y = e*. The base e = 2.718 on scale LL3 being always aligned
with the index of scale D, it follows that any power of e can be found by corres-
ponding movement of the cursor to the exponent on scale D. The setting used
in Fig. 35, for instance, would be correct for the exponent 1.489 and its decimal
variations:

!4 — 443 e 01489 _ 4015

e1489 — 1.1605 001489 _ 1.001489

With the last example we again arrive at the equivalence of € =~ 1 + x.
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x
145 Rootsa = ]/y Lo T : &0.01%
0.7514 -0.0x

Expressions containing roofs are often  Ligz
easier to handle when changed to the i &g&m e
form of a power. In this case set the OF

exponent on the Cl scale. cF 7
1 CF &
3.5 — 35
Ve:e 2 = 1.3307 L : lg x
Sk i o i
AR 5 c : "
.35
l/e LLJ "@ @x
1 L2 (?1.3307 edlx
1 o 1L 20072
T — e BRets Y51 l
3.5 —
Ve Fig. 39 Solution with the CI Scale

Inversely to the process of raising a number to a power we can also find the
roots of numbers by using the Log Log scales in the same manner as the funda-
mental scales are used in division:

X
From y = a* we can derive ]/Y = a.
Procedure:

a) Set the radical index on C opposite the radicand y on scale LL.

b) Read the root under either the left or the right slide index on the appropriate
Log Log scale.

The reading rules in chap. 14.2 are also in principle applicable in this instance.
Bear in mind that when the reading is taken under the right slide index, the
answer will appear on the next lower labeled Log Log scale LL1—LL3 or
LLot—LLos.

— — 00008
AL 1 2-0012
j/21 = 5241 —— = 0192 .
V21 5
Uhios 1 o
/21 = 1.485 55— = 6734 7
Y21 g
77 1 o
Y21 = 10403  o—= 96122 e
]/21 2001x
~~~~ 200078

146 Logarithms

14.6.1 Logarithms to any base

With the Log Log scales logarithms to any base can be determined. By revers-
ing the process of raising a number to a power, we obtain its logarithm:
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=a* x=logqy(read: logarithm of y to the base ).
The finding of a logarithm is thus identical to a problem of powers in which the
exponent is sought.

Procedure: c ? 4 &

a. Setleft end line of scale C over base D *
value “a” on the appropriate Log 443 5 T e*
Log scale. i otis

b. Set hairline of cursor over the anti- L
log y on the Log Log scale. L

¢. Read the logarithm under hairline Fig. 41 ﬂ@g:'ﬂ25 =30
of cursor on scale C.

The position of the decimal point is derived from logq a = 1.

With the index of the slide over the base “a’” on the Log Log scale all loga-

rithms on to the right of “a” are greater than 1 and all values fo the left of

“a’ are smaller than 1.

Reading Rules:

a) Passing from one Log Log scale fo the adjacent scale — in the order LL3, LL2,
LL1 or LL03, LL02, LL01 — signifies a shift of the decimal point in the logarithm
by one place to the left and, in the reverse order, by one place to the right.

b) The logarithms assume positive (negative) values when their antilogs and
bases are set on equalcoloured (unequal-coloured) Log Log scales.

When the slide is pushed out to the left of the body, all readings are taken

from left of the base value. Since these values are < 1, the decimal point must

logically be moved one placetotheleft.

meg bt
Lhos ! £7001x
14.6.2 The decadal logarithms to | S
the base 10 can be found in the same £ ‘ 4@9&#{_9 o
manner by setting the index of scale C  £Loz- Gt
to the base 10 on scale LL3 (Fig. 42). 2 — 1
= 0601263 | i

logyg 50 = 1.699 (a) g i@ ©1659 ©-16249:03010_
logqg 2 = 3010  (b) (i —Of 50 ¥
logyg 1.03 = 01283 (¢) L2 ‘ + 2l
loggg .015= —1.824 (d) i y 103 : 2007

. o .3010 b * L C - -
log10 2 ( ) | Fig. 42 Dhemdui Logarithms

-
14.6.3 TheScale L oF e
The most frequently used decadal €5 n’x
logarithms are also contained in the CF %
customary mantissa scale L on theslide 02842 lgx
of the rule. This scale gives the man- o 7
tissas only. As in using a logarithmic . Lo x
table, the characteristic is determined g : ¢

by use of the rule “number of digits in
the antilogarithm minus 1" and pre- | Fig.43 log,, 1.92 = .2832
fixed to the mantissa. The logarithm of
anynumbersetonscale Ccantherefore
be found by reading the mantissa
directly on scale L and, inversely, one
can also find the antilogarithm corres-
ponding fo a given logarithm.

14.6.5i The natural logarithms to = &, &
Fig. 44 loge 1.

the base e can be read directly on log 12? ggga
scale D (Fig. 44). logg 4.5 = 1.504
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Examples:

logqp 6 = .778 logp 16 = 4.0 log.,s 2 =— J
logip 1.14 = .0569 logop 1.02 = .02857 log, .05 = —2.99
logip 1.015 = .00647 logy .25 = — 2 log, .622 = — .475

94.7 | Solving Proportions with the Log Log Scales

When the slide index is set to some base value of “a’ on a Log Log scale, the
powers to any exponent and also the logarithm of any number to this base can
be obtained. The base a, when set on the Log Log scale, can therefore be re-
garded as one of the terms in a proportion.

14.7.1 ys = a”

y2 = a™

logyi = n X log a I'
logy, = m X loga !

logea logey; logeys Fig. 45
or —m = =
1 n =

When three given terms of a proportion are set, the required fourth term can
be read and the rule is at the same time adjusted for reading as many other
relations proportional to the first ratio as may be required. Here we have
another opportunity for applying the principle of proportion for which the slide
rule is so eminently well adapted.

14.7.2
. : T
y=a' logy = —loga g 27? e i
7 X
logy loga - & 3% 4
i L2 | eats
68 ] ‘ T 20015
oy 32—_7 logy - log 4.3 Bl 4
Uiz 18] 7 Fig. 46 log 4.3 _ log 39.4
SEET 27 8

After setting 2.7 on C opposite 4.3 on scale LL3, the result 39.4 will be found on
the LL3 scale under 6.8 of C. Modifications of this problem are, of course,

solved analogously:
247,

Yii= 1/4'36.8 or y2.7 o 4‘36.8

14.7.3

The formulas of many laws in the natural sciences can be suitably arranged to
permit solution in the manner discussed above, when the change in one variable
is proportional fo the logarithm of the ratio of the other variable.

Y2
log — = const X (x,—X,)
Y1 Bases 0
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Any change x; fo x, over the increment i entails a change of y, fo y,. When

Y
the ruti072-is given the designation r, i.e. the rest of the original whole quantity,

1
the above equation can be written:

leg . log r.
I—o—g—s=consf=—_—1=——,E=...
' 2
Example: Radioactive Decay
A substance is known to disintegrate at T ‘ a0
the rate of 40% in 30 days, leaving a 47 1 g
residue of 60%. Loz ‘ f}gj g0z
iy = 30, ry= .6. e 024 u o
il 202 ! OF
/:‘zf're;' I?gw many days will 209 be left? 2z %5I I’m Zi
log .6 log .2
= =i 5d . Fig.
30 % X = 94.5 days ig. 47

14.7.4

For the multiplication of a Logarithm
by a constant factor the constant on C
is set opposite to the base of the loga-
rithm on the Log Log scale. Thus a
tabulating position is obtained.

x G c
x=cxlog’qyorm=—1—=m l
Examples: 2 X log,, 100 =4 : - -~

2 %'log,y 1.8 = 51188 e Ol

In electrical engineering it is often necessary to' compute the decibel corres-
ponding fo a given voltage ratio;

db = 20 log —8—;

15. Hyperbolic Functions

The unique construction of the Log Log scale system enables the formation of

hyperbolic functions. The values of ¢ and e~ can be obtained by one setting
of the cursor.

ot x X 4 e~ %

sinh x = cosh x =
2

16. The Detachable Cursor and its Lines

16.f The Mark 36

ARISTO ) [ @)
(Applies to 870 and 0970 only) ”
9 q

The front face of the cursor contains a 3 ﬁ\ “""E
short line to the right of the center A Wy
line and over the folded scales. The W Sy
lateral distance of this line from the o 5 e
center line corresponds to the factor % ile's \ﬁ
36 for readings on scale DF relative fo i d ¢
any setting on the fundamentalscale D. o — 5 . @
By virtue of this arrangement the cur- L J U - P
sor can be used for conversions of': Fig, 49 Fig. 50
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1 hour = 3600 seconds

1 meter per second = 3.6 kilometers per hour
Degrees to Seconds: 1° = 3600

Years to Days: 1 year = 360 days (for interest computations)

Hours to Seconds:

162 The Marks for Circle Areas
The intervals between the upper left or the lower right line on the one hand and
the center line on the other hand are equal to %: .785 i. e. the factor applicable

in computations of circle areas or round sections A = dz% (Fig. 50). To find
any required circular area, set the lower right or the center hairline to the given
diameter d on scale D and read the area under the center line or the upper
left line, respectively, on scale A. With the 20"’ model 01070 use the lower
right and the upper left hairline.

16.3 The Marks kW and HP

The interval beiween the upper right line and the center line represents the
factor for converting kW to HP, and vice versa, on scale A.

Hence, when the center hairline is set to 20 kW, for example, on the scale of
squares, then the upper right line indicates the equivalent in HP viz. 26.8.
Inversely, when the short right line is set to 7 HP the center line will produce
the equivalent 5.22 kW.

On the 20" model No. 01070 the kW and the HP marks are attached to the
upper left and the upper right cursor line, respectively.

16.4 Detaching the Cursor

The hairlines of the two cursor glasses are precisely matched so that the user
can pass from one face of the rule to the other when required in the course
of a problem. The accuracy of its adjustment is not disturbed when the cursor
is taken off for cleaning.

The cursor glasses are secured, on one face with four screws and on the
other with two screws, of special construction. These two screws act similarly
to press studs. To remove the cursor from the slide rule, press down with the
thumb nails on the end of the cursor bridge marked with arrows. The press
studs are thereby released. The upper press stud is opening by raising the
free edge of the cursor glass and the cursor can then easily be taken off the rule.

6.5 Adjustment of the Cursor

Even though the cursor hairs are reliably adjusted, violent jarring of the rule
may throw them out of alignment. In such a case loosen the four screws on
the cursor face with the HP mark. Turn the slide rule over and shift the other
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glass until the hairline is accurately aligned to the index lines of the scales.
Holding the adjusted glass firmly in position, turn the slide rule over, and
adjust the first glass in a similar manner. Tighten all screws carefully to
prevent renewed dislocation of the hairlines.

7. Treatment of the ARISTO Slide Rule

The instrument is a valuable calculating aid and deserves careful treatment.
Scales and cursor should be protected from dirt and scratches, so that the
reading accuracy may not suffer.

It is advisable to give the rule an occasional treatment with the special cleanser
fluid DEPAROL followed by a dry polishing. Avoid chemical substances of any
description as they are almost cerfain to spoil the scales.

Do not leave the rule on heated surfaces such as radiators. Do not expose for
long periods fo strong sunlight. Deformations may occur in temperatures above
140° F (60° C). Rules so damaged will not be exchanged free of charge.



