Software Portability by Virtual Machine Emulation

by

Stefan Martin Vorkoetter

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 1989

© Stefan Martin Vorkoetter 1989

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individu-
als for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying, or
by other means, in total or in part, at the request of other institutions or individuals for
the purpose of scholarly research.

(ii)

The University of Waterloo requires the signatures of all persons using or photocopying
this thesis. Please sign below and give address and date.

(iii)

Abstract

The proliferation of diverse computer architectures has resulted in an increased need for
portable software, but many portability techniques incur a performance penalty. This
penalty can be reduced by restricting the range of architectures to which a program must
be portable, at the risk of limiting portability to new hardware as it becomes available.

In this thesis we examine a technique for making a program portable to architectures for
which it was not intended, without affecting its performance on other architectures. The
technique used is virtual machine emulation, whereby an ideal (for the program) archi-
tecture is emulated by another program on an incompatible system. By designing the vir-
tual machine carefully, performance loss due to emulation can be minimized, and the
program to be ported can be recompiled for the virtual machine without modification.

(iv)

Acknowledgements

Although I am the sole author of this thesis, it would not have been possible for me to
write it without the help and support of a great many people.

First, I would like to thank Dr. Gaston H. Gonnet, for hiring me as a programmer for
the Symbolic Computation Group during the summer of 1986, for assigning to me the
project of porting Maple to the IBM Personal Computer, for supporting and encouraging
the unorthodox approach that I took, and for being my supervisor during my graduate
studies.

I would also like to thank Dr. Keith O. Geddes, Mr. Mike B. Monagan, Mr. Benton L.
Leong, Mr. Greg J. Fee, and the many other members of the Symbolic Computation
Group at the University of Waterloo for providing input into this project, and answering
my many questions about the Maple system.

One of the greatest encouragements in the course of this project has been its successful
application to the wonderful Ceres workstation. This would not have been possible
without the support of Professor Jiirg Gutknecht and Professor Niklaus Wirth. In this
vein, I would also like to thank the graduate students at the Fachgruppe Computer-
Systeme of the Institut fiir Informatik at ETH Ziirich for their advice and assistance. I
would especially like to thank Mr. Clemens Szyperski for bailing me out when I acciden-
tally destroyed the file system on my workstation, and Mr. Cyliax, Mr. Noack, and Mr.
Wakefield for providing excellent technical support.

Finally, I would like to thank my wife, Lori Albrough, without whose unfaltering support
and encouragement I would never have completed this thesis, my cats, Hannah and Mer-
lin, who patiently sat on my lap as I typed, and my parents, who kept asking me when it
would be done, so that one day I could say, "It is done."

v)

To the Empress of the Universe

(vi)

Table of Contents

INtroductioncooooiiiiiiiiii e 1
Lo1o HESEOTY oeiiviiiiiecieeeiene ettt ee ettt cs e essaee st eesaaeeeneesssseesessasensseesseeasassesssseses 1
1.2, The Maple MAaCRINecccccoviuiiimiiiiinieiiieeeeceeie ettt ee et e e e e eeeaeseeeessaseeseons 3
1.3. Organization Of the THESIScccccccomviiiiieiiiiriitieiieiee et eeeeeeteseeeeseesseessesaeeas 3

Methods of Software Portabilitycccccovovvovivvovereeereeeeeeeeeannnnn, 5
2.1. What is Software Portability?cccccoiiviiiiiiiiiiiiieeeeceee e eeee e e e e e e eeae s 5
2.2. Factors Affecting Portabilitycccoovimiiiiimiiiiiiiiiieeeeeee e eteeeaeeeesen 5

2.2.1. Programming Languaesccccovivviiiuiieiiiniiieiiieineeeeeeeeeeeeeeeeeeeseeesneeans 5
2.2.2. Operating SYSLEMSccceoviiiiieriieeiieeeieeee et eeatessaeeeeeeeseeeeessesseesssaessreens 9
2.2.3. Machine ATCHIteCtUIec.cccooeveiieiieiiieiieeeeecee et eeeeee e e e e e e e e eanas 10
2.3. A Hybrid APPIOachooiiiiiieiiiiiieceeie ettt e eee e e et eeee s eaeesessae e esseeens 13

The Portability of Maplec.ccoooviiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeen, 15
3.1. Portability to 16 Bit Machinescccoooomiveeieceeinreeeeeeeeeeeeeeeeeeeeeeeseneoas 16
3.2. Portability to the IBM Personal COMPULETc.ccccorvuveveeeevveverereereerersenanns 17

The Maple Machineccooooeiiiiiiiiiiiiieeeeeeeeeeeeeeeee e, 22
.1 HESEOTY .ooiiiiiiiiiceieei ettt et ettt s e e eeeaeeeeseteseeneesessesensseseeeseeeeseaes 22
4.2. Goals of the Maple MaChinecooeuviiiviuiieineeeeeeeeeeeeeeeeseeeee e eees e eere e e, 23
.30 DESIZI oottt ettt e e et e et a et e eaaeeentre e e eeee s 24

4.3.1. The Programmer's Modelcc.oooooiimmmmeeeeeeeeeeeeeeeeeeseeeeeesoeeseos 25
4.3.2. The Evaluation StacKccoccooviiviireeviiiiiiiiieeitie et ee s eessresseeeseeeneea 29

4.3.3. The Return Stack and Procedure CallSccoeoeeeeeeeemeeeeeoeeeeerieeeseessesenes 30

4.3.4. INSIruCtion Setcccooiiiiiiiiiiiriieiiieetiectte et e ssee e et eesneeaeeene 32
COMSLANLSoooviiiiniiiiiiiiiiiiecceete et s e s e e e sae e satesaeeennes 33
ATTERMELIC Looviiiiiiiiiiic e e et eaae e 33
BIEWESE .ooeiiiiiiiiic ettt et e e e e e e enbeeenateeean 34
BOOlean ...t bt 34
COMPATISOM ..ooiiiiiieciiiiiie e et se et teeeeeeeeeesessesnreeessesnnees 35
Stack OPerationsccccoovivvieeiiieeieiiieerieesrecreeee e eereseeeesetesesseeeseeeneaesseans 36
IMEMOTY ACCESS .oiiiiiiiieiieniiniirinnreeereeseeseeisranssesrenseesssssessssssennneneseessesssssrsnanes 37
Control FIOWoooviiiiiiiiiciccicce ettt et e e et e nas 38
HYDTIAS oo e e eeeeee st eeseeeseeaeaaneneaaassesesanenesenennes 44

4.3.5. Intrinsic FUDCHIONScccovvvviiiiiiiiiiiiie ettt eeee s eeeeseeeeeeeae 45

Development ToOISoooooiiiiiiiiiiiiiieeee e 54
5.1, The COMPIIErcooiiiiiiiiiiiiie ettt e e st e eeeaee e s e eeeseeeans 54

S.1.1, The Small-C COmPIIErcoovviimiiiiiiiitiiieieeeceeceeeee et eeeeeeee s e et eeeaeseeaans 54

5.1.2. Shortcomings of the Compilerccoooovevvmiiviviiieeeeereeeeeeeireeeeseeeanes 54

5.1.3. Changes to the COMPIIErcccoeeiiivrviinieeiiiiteeeeeeeeeeeeeeeereeeereeeeseeeeens 55

S.1.4, COMPILEr BUZSccooivuiiiirriiiiiiiieeetieeeceeceetee et tteeeeeeteeeseseeeeessnressennes 56

5.1.5. Preliminary TeStINGcccccoevviviiiiereereeeeeerceeeeie et ceeeeeree e seveeseenenes 56

5.2. The AsSembIr/LINKErccooooiiiiiiiiiieiiiiieieeee ettt ereeeseeeseseeeeseessaeeans 57

S5.2.1, OVEIVIEW oottt ettt et et ee et teseseeeseeenaneans 57

5.2.2. Why Link at the Assembly Level?cccccocoovvivviriiineeeereeeeeeeeeiieeeennns 58

5.2.3. InStruction FOTMAatcccooviiimiiiniieneiciceeceee et eeee e ee e e e eaeeerens 59

5.2.4. Assembler Directivesc..cccccoovmiievivriereniiiiie et s e s eeeteseseaeans 60

(viii)

S5.2.5. FIleS Producedooooooiiiimmiiiiiiiiiiiiieeiereeiieeseneesseeearemenesssesesssssssssssssssssssssons 68

The First Implementationcccooooiiiviiiiiiieiieeeeeeeeeeeeeennn, 70
6.1. Overview Of the INEerPreterccoovviiriiiiveicneiieeieeineeeeeeeeeeseeersenesessesssessssssses 70
6.2. Tmplementation SEIAtEZYccooivviiiiiiiiiiiiriniiiie et riceee e esreesseeseeessssnnreesesns 70
6.3. Inmitial DeDUGZINEG ..ccoovreiiiiiiiiiiiieeccee et eeeeaesesneseesnsnanes 72

6.3.1. Some Small Test Programs and ReSultsccccoeoovmmmuereveeeeresiesveneeennnnss 72
6.4. Getting Maple RUDNINGooccooiiiiiiiiiiiiicecceeceeeett e e s ee e s saeessneeeanes 74
6.4.1. Debugging Facilitiescccceeeiiiiiiiieiiiiiiieie e e e e eeeeeese e 75
6.4.2. Using the Assembler's Map and Correlation Filesccoeuunnnn.... 78

System Optimizationcccouvvvvvveinieiiieeeeeeeeeeeeeaeaeeneaen, 80

7.1. Improving the Compilerc.cooooiiiiiivimiiiiiiiiieeeeeeeeeeeeeeeeesreeessesssessenseesns 81
7.1.1. Maple Specific FURCLIONSccccocoiiiiieiiiieiiiicecceceece e ceeee e eeeea e, 83
7.1.2. Improved Function Callingc.cceeeviuiiimiiiiiinieiiiiiieeececeeeeeeeeeeeeeeeeaans 83
7.1.3. Other OPtIMIZAtIONScoooiiinvriiiiiiiiiieieiiieiecee et eaeeeeeeee e eeessns 85

7.2. An Assembler Peephole Optimizerc.ccoooovviiiiieiivinieeenieeeeseeeeeeereeseesreans 86
7.2.1. Why Optimize in the ASSeMDBIEr?ccccoovvvvieeieeieeersiieeeeieeseeeeeesesrsanns 86
7.2.2. The Code Burst Tableccccooouveeeiiieeveiriiiceieseeeeeieeee e eeeeeeeseeeeeaes 87
7.2.3. The Fast SWITCH CONSLIUCEccovrierrierieieeiiieeeeeceeieeeeeeeeseeeeeeseeeeans 88

7.3. Improving the INLErPreterccccooviviveveiiiiiiiiiiiieeee e e eeeeeeeeeseeeeseaerseeesessseans 89
7.3.1. Representation 0of MeIMOTYccecvuvreinrieereiiiiiieceeeeeeeeees e eeeeeeeeeeeeans 91
7.3.2. Reducing OvVerheadccccccooiveiveiiiiiieiniiieeteeeeeteeeeeeeeseereesreesesssressones 91

7.4. Adding New INSrUCHONScccoeveimiieeriiiniieneiiicie ettt eeeesteeeeeseeeeeees e s 93
7.4.1. Generating Instruction Profilescccccoovvviveiveieireneeeeireeeeeeeeseeeon 94

(ix)

T2, ADALYSIS oo et te s et e e s s e s te e e e e e e e e seere s ntaeeeees 97

7.4.3. Modifying the SYSLEMcocovviriiiiiiiimiiiiiiieie e eecresi e e e erreneenereeeessas 99
7.4.4. Iterative IMProvementcooovueeiieiinrereiieinereeeeeeieeeeeeeseeeeeeeeeeeaans 100
7.4.5. New IDStrUCHIONSc.oooceiiiiiiiiiiiiiiircieiecieeitree e e et ettt saneenneene 102
7.4.6. Other OPHIMIZALIONSooovieeniriieiiiiiiieeeeeciiee et eees e seeeeee e eeseneeeeas 104
7.5. Some Performance FigUresoccocoooiiiiiiiiiiiiiniecceieiecnee e eseeeeeseneeneas 106
A Real World Example: The Oberon Systemccovvvninieienannnn.. 107
8.1. A Brief Introduction to Ceres and ODbBeroncocoeeevvvvevveveecrneeeeeeenenn 107
8.2. Obstacles for the ODberon POTtcccoovveiriiiriiiiereeentieeereeeireeeenie e e see e 109
8.2.1. The User INerfacecccccoviieiiiinrienienriiriieniiesereenesereeseeneeseeesseesseessees 109
8.2.2. The File SYSLEIMccccreiiiiiiiiieiiiiiiiiiieieiereietetatet s e sseeseseeseasarasesesnnssssseseses 110
8.2.3. The Oberon Programming LaNGUaZecccoovvvieevereecereeeeeenreeeesreeesesans 1§01
8.3. Porting the Maple Machineccoooviiiiriiiiiiiiiiiiiirieeeeeeteeeeee e eeeeereesessaeens 111
8.3.1. The CFileIO Moduleccccoociiiviinieeiiieieeiereiireeceeeie e essreessessteseeeeens 111
8.3.2. Writing the IMLErPretercccooiiiviiiiiiiriieiriiiieeieeeeeeeeeeseeeesesresssessesenssenseess 112
8.3.3. Intrinsic FunCHIONSc.ccovvviiiiiiiiiiiicieieee et s e ee s saeee s 113
8.3.4. Hiding the User INerfacecccecioeereuvevevieeeiiieiieiciereceesneee s eeeeeeaees 115
8.3.5. Running Maple Under ODeronccoevvevimiviieereeeeeeeveressreressssssssassnns 119
8.3.6. Porting the LIDTarycoccoooiiviiroiiiiiiiiiiiieceeis e ee e eeeeeenesesreesseneas 120
8.4, PerfOrmancecoiiiiiiiinieniiitnetnieeec ettt ees et save s et e e seeeaeeaenan 122
Future Directionscccooovviiiiiiiiiiieeiicie e 124
9.1. The IBM Personal Computer Familyccoocoocvvvmmieecieeeeeseeeeeeeseeseessonns 124
9.2, New IDSITUCHIONScooouiiiiiiiiiiiiiieienie ettt ae s e e eteesreseneeseenneas 125
9.3. A Threaded INLETPIEtercccceeieeieiiiieeiiieirieee e eeeeeeeeeeeeeeeeaeeaeeeesseessreeeesessnees 125

(x)

9.4. Global OptIMIZAtIONccooriviniiiiiicreee et e s atecses s sateaeeraens 126

9.5. Merging the Interpreter and the Maple Kernelcooeuuveiiivienereerreiiniorseneeneens 126
9.6. A Hardware Maple Machine?cccooiiiiiiiiiiiiiiiiiccceri e eeetsieeseeeesnsreesnerens 127
REfETeNCES ...ttt e ee et seeeeeeaaaeenes 128
Related WOTKSccooovriiiiiiiiiiiieiieeeececccee e e eee et 131

(xi)

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

List of Figures

The Architecture of the Maple Machinecccccoevvieeeiiiirenininreieeeeeeeennen, 26
Instruction EXeCUtionccccovviiiiiiiiiiniiiiiiinicie e 29
Procedure Calling SeqUenCecccccceeeiieiiiininiiiieieiiien e s ererreerrssereneanrereaeaeaee—a 31
Structure of a SWITCH Statementcccccceeeeeicineierneeeeereninieeeeersnnereeesinnes 43
Structure of a FOR Statementccccccevieriiiiieiiiiiiirieieeeee e ceerae e 64
Structure of IF Statementsccccovvimiimiiiiiiiiieeeerrieeeceeeeeenseeeseeecnsreenns 67
Structure of a FAST-SWITCH Statementccccooeevvierriesiinnreenieniereesrensonnns 90
Instruction Pair Execution Profile Before Optimizationc............ 96
Instruction Pair Execution Profile After Optimizationcc.cccecvouunnnn, 101

(xii)

Introduction

The proliferation of diverse computer architectures has resulted in an increased need
for portable software. There exist many techniques for the development of software that
is portable across architectures, but these may incur a performance penalty. By restrict-
ing the range of architectures across which a program should be portable however, this
penalty can be minimized. A problem then results when it is desired to port the program
to an architecture that is radically different. It is generally not desirable to reduce the
performance of the program on the majority of architectures just so that it can be easily

ported to a small number of different ones, so an alternate approach is required.

In this thesis, we will examine a software portability technique that is a conglomera-
tion of various earlier techniques. This will allow us to port a large application program
to a variety of atypical system architectures. By "system architecture”, we refer to both
the hardware of the machine, and the structure of the operating system under which the

program must run.

1.1. History

In the summer of 1986, a project was started to port the Maple [3] symbolic compu-

tation system to the IBM Personal Computer family.

Maple is an interactive program that can solve problems in many areas of mathemat-
ics, such as differential and integral calculus, number theory, linear algebra, and group
theory. Maple is also a language that allows users to write programs to solve problems
that Maple cannot solve directly. The Maple system consists of two parts. The kernel is
written in Margay, an extended subset of the C programming language [10], and can per-
form basic functions such as arbitrary precision arithmetic, differentiation of simple
expressions, and interpretation of the Maple programming language. The library is writ-
ten in the Maple programming language and provides Maple’s higher level functionality.
Library routines perform such functions as matrix multiplication, evaluation of tri-

gonometric functions, and integration.

Margay is a macro processor, loosely based on the standard C preprocessor but with
many extensions. The Maple kernel is written in terms of a very large collection of mac-
ros specifying everything from the target machine’s word size, to the syntax for declaring
initialized variables. By changing the macro definitions, it is possible to have Margay
generate code in the C or B [7] (the predecessor to C and successor to BCPL [18]) pro-
gramming languages, for a variety of machines. When Maple was first implemented, no
C compiler was available to its authors. By using Margay, it was possible to compile the
early versions of Maple with a B compiler, and then switch to C when it became avail-
able.

The standard procedure for porting Maple to a new machine is to modify the macro
definitions to reflect the system architecture of the machine, run the Maple source code
through Margay, and then compile the B or C language output on the new machine. If
the file naming conventions of the new machine’s operating system differ from those

assumed by Maple, a conversion routine will also have to be written.

This approach to portability had always succeeded in the past, but it did not succeed
in the case of the IBM Personal Computer (PC). The PC architecture differs from any
architecture to which Maple had been previously ported in several ways. First, all earlier
ports of Maple had been to machines with a 32 or 36 bit word size, while the computers
in the PC family were all 16 bit machines. The Maple source code makes extensive use
of shifting and masking operators to store information in the bits of a word. The other
major architectural difference lies in the structure of the address space. In order to be
able to address up to a megabyte of memory using only 16 bit registers, the PC’s CPU
(the Intel 8088) uses a two part address consisting of a segment register and an offset.
This conflicts with the assumption of a flat address space that is apparent in Maple’s
source code. An attempt was made to compile Maple by changing all declarations of
integers to long integers (by changing a macro), and coercing all pointer values to a nor-
malized form to mimic a flat address space, but this resulted in a code image three times
the size of the code image on a VAX minicomputer. This would not have left enough

memory on the PC for Maple to do any useful work.

At this point, the author of this thesis suggested a different approach. Instead of
massaging Maple to make it suitable for the IBM PC, perhaps it would be possible to

make the PC look more like a large computer.

1.2. The Maple Machine

The Maple Machine is a program that allows for the execution of Maple on any
hardware to which the Maple Machine can be ported. It is between one and two orders

of magnitude smaller than the Maple kernel, and thus much easier to port.

In this thesis we will discuss the development of the Maple Machine, its portability,
and its performance. We will examine other work done in this area and show how the

Maple Machine compares in portability and performance.

1.3. Organization of the Thesis

The parts of this thesis are organized such that each concept is explained before it is
used. However, it is also meant to be a viable reference for programmers of future
Maple Machine implementations, and thus has been broken into sections describing vari-

ous aspects of the machine.

Chapter 1 is this introduction, giving an overview and history of the Maple Machine

project.

Chapter 2 discusses some of the techniques of software portability, and their advan-
tages and disadvantages, while Chapter 3 describes the portability problems with the
Maple system.

Chapter 4 describes the details of the Maple Machine architecture, and the design

decisions and compromises that were made.

The compiler and other development tools written for the Maple Machine are
described in Chapter 5, while Chapter 6 discusses the process of producing the first func-

tioning implementation.

After a working version of the Maple Machine was completed, much work was put

into improving performance. The tools and techniques used are described in Chapter 7.

In Chapter 8, we examine the practical problems of porting Maple and the Maple
Machine to a new system architecture, the Ceres workstation running the Oberon operat-
ing system.

Chapter 9 summarizes the current state of Maple Machine project, and presents

some possible ideas for future enhancements.

Methods of Software Portability

In this chapter, we give a basic definition of software portability, and then discuss
the factors making it possible. Factors relating specifically to the Maple system are dis-

cussed in Chapter 3.

2.1. What Is Software Portability?

Poole and Waite [17] define software portability as "a measure of the ease with
which a program can be transferred from one environment to another: if the effort
required to move the program is much less than that required to implement it initially,
then we say it is highly portable". Almost any program can be transferred to any
machine of sufficient size, but if the effort to do so approaches or exceeds the effort

required to write the program in the first place, it cannot be considered portable.

2.2. Factors Affecting Portability

There are several factors that influence the portability of a computer program. The
choice of programming language is probably one of the most important, followed by the
operating system, and the hardware. However, no combination of choices, no matter
how well made, can guarantee portability. Some effort will always be required on the
part of the implementor to reduce the effort required to port the program to a different

system.

2.2.1. Programming Languages

The most important factor influencing portability is probably the choice of imple-
mentation language. A program written in assembly language, for example, will only be
portable to computers using the same central processing unit (CPU), and probably only
under the same operating system. Similarly, a program written in a proprietary high-level
language supplied by a specific machine vendor will only be portable to other machines
supplied by that vendor. In order to facilitate portability, a language available on all

future target machines should be used. This would appear to require some crystal ball

gazing, but several languages have survived the rapidly changing world of computer tech-

nology and look as if they will continue to do so for quite some time.

After evaluating a language for portability, it is important that the language chosen
is suitable for the task at hand. Using an unsuitable language may require the implemen-
tor to use many system-dependent "tricks" to attain satisfactory performance, thus

compromising portability.

Once a language has been decided upon, one cannot simply write the program using
any and all features provided by the language implementation being used for develop-
ment. A programming language alone will not ensure portability. Many languages have
about them a mythical aura of portability, attributed to them over the years by users who
keep telling one another that this is so. Lecarme [12] points out that many people state
that, "My program is written in FORTRAN, consequently it is portable”. The author of
this thesis was recently consulted about porting a graphics-intensive educational program
from one brand of microcomputer to an incompatible brand and was told that, "It should

be completely portable because it is written in C".

There are several reasons why a program written in a high-level language such as
FORTRAN or C would not necessarily be completely portable. Many language imple-
mentations (of FORTRAN in particular) offer extensions to the standard language. The
use of these extensions is a habit that is very easy to slip into, and moving the resulting
programs to machines with an implementation of the language that is lacking these exten-
sions becomes difficult. This is compounded by the fact that the extensions that are used
the most tend to be the ones that overcome the greatest deficiencies in the standard

language.

Programs do not run in isolation; they make use of facilities provided by the
hardware of the machine they are running on. These facilities include mass storage dev-
ices such as disks or tapes, output devices such as line printers, plotters, or high resolution
colour graphic displays, and input devices such as keyboards and mice. A well written
library of routines to support these devices can make the programmer’s work easier, but
unless these routines are available on other systems, they will not contribute to portability.
Thus, a truly portable program can make use of only those devices common to all Sys-

tems.

One further obstacle to portability that should be hidden by programming languages,
and is often ignored in introductory programming texts, are the details of the underlying
machine’s arithmetic. Programming language definitions tend to discuss arithmetic in
terms of integers and real numbers, as if the computer actually dealt with these quanti-
ties. In actual fact, most computers deal with integers modulo N, where N is usually a
power of two. Real numbers are represented by floating point approximations, which are
adequate for most purposes, but can introduce severe errors in complex calculations. As
long as the details of numeric representation are documented, programmers can take
them into account. However, programs that consider the details of specific machine
representations are inherently non-portable since these details differ from machine to
machine. The ideal programming language would of course hide all these details. The
Maple language actually does hide these details, but with a performance penalty that

makes the language wholly unsuitable for general purpose programming.

Several programming languages are suitable for writing portable programs. The one
which is probably considered the most portable by many people is FORTRAN. Why this
is so is a mystery to the author, since dialects of FORTRAN are about as numerous as
FORTRAN implementations; almost every compiler accepts a different language, even
though many claim to follow a standard. In order to write portable programs in FOR-
TRAN, one has to restrict oneself to the subset of the language that is implemented
equivalently by all compilers. According to Knuth [11], the CONTINUE statement

(effectively a no-op) is the only part of the language that meets this requirement.

There exists a program called PFORT [19], which verifies a FORTRAN program
for compatibility with the FORTRAN 66 standard. This program checks for correct
usage of constructs such as COMMON (which allow sharing of variables between
separately compiled modules), the passing of parameters to subprograms, and accidental
use of recursion. Incorrect use of the first two may result in a program that works when
compiled with one FORTRAN compiler, but not with another. Recursion is not allowed
by FORTRAN at all, but is not detectable by the compiler when two mutually recursive
subprograms occur in separate source files. PFORT does not check for portability prob-
lems resulting from misuse of arithmetic operators, the selector of a computed GOTO
going beyond the number of target line numbers specified, and correspondence of I/O for-
matting fields (in FORMAT statements) with variables (in READ or WRITE

statements). Thus, PFORT can provide some assistance with portability, but can not

ensure it.

Pascal is considered by Lecarme and many others to be a very portable language.
The author agrees wholeheartedly with this, for several very good reasons. Pascal has a
clear and concise defining report, making it straightforward for the implementor of a Pas-
cal compiler to ensure that her implementation agrees with both the letter and the spirit of
the language. The few ambiguities in the language [22] definition are mostly of academic
interest, and not likely to pose any practical problems. Most importantly, Pascal provides
powerful data and control structuring facilities, making it suitable for a much wider range
of programming tasks then FORTRAN. Unfortunately, it is lacking in some areas that
would make it suitable for large projects. For instance, there is no language defined

means of implementing separate compilation.

The C programming language [10] is also considered very portable. Unlike Pascal
however, C does not attempt to hide all of the details of the machine from the program-
mer. It is possible to write extremely portable software in C, but it is also possible to
write very machine specific code, such as a driver for a complicated peripheral device. C
has all the data structuring and control structuring ability of Pascal, but does not provide
the same degree of protection against non-portable use of these facilities. Careful use of
the C language and division of programs into machine dependent and independent parts
can result in very portable systems level programs. By "systems level”, we are referring to
facilities such as those typically provided by an operating system, such as file manipula-
tion, I/O control, process scheduling, and memory management, as opposed to applica-
tions level programs such as word processors or symbolic computation systems like Maple.
However, C’s structuring facilities also make it suitable for writing portable applications

level programs.

Just as there is a portability verifier for FORTRAN, there is also one for C. The C
verifier is called lint [21], because it is designed to pick the "fluff" out of C programs.
Lint serves two main purposes: it detects errors and omissions that the C compiler would
pass over, and it attempts to point out portability problems. C compilers have tradition-
ally been written to perform a minimum of error checking, under the assumption that the

programmer knows what he is doing, and would run a program like lint if he wanted to

see pages of warnings. Some of the portability problems that lint reports are:

1. Relational comparisons of char type variables with zero, since these would be invalid

under implementations which treat the type char as unsigned.

2. Assignment of long type variables to int type variables, since these would result in

loss of precision on machines where the two are not the same size.

3. Assignment of integer values to pointer variables, since the two are not necessarily

compatible.
4. Word alignment of pointer values, since this may be required on some machines.

5. Statements such as "a = - b", since some older compilers will interpret this as "a -=

b", while the newer compilers interpret this as "a = -b".

As with PFORT, lint does not guarantee portability. It is possible to write a program that
passes through lint unscathed, but is still not portable, due to implicit assumptions about

the number of bits in a word or details of floating point arithmetic.

2.2.2. Operating Systems

The operating system provides the environment under which a program must
operate. It provides facilities for creating and using files, reading input from the user,
and printing or displaying output. The choice of operating system, and consequently the

facilities provided, plays a major role in the portability of a program.

Because an operating system can hide many of the details of a machine’s architec-
ture from a program, portability is enhanced. If the program makes use of the hardware
only through the facilities provided by the operating system, and these facilities are pro-
vided in a device-independent way, then the program can be made portable to any
machine that runs that operating system. The portability of the program is then depen-

dent on the widespread availability of the operating system under which it runs.

The operating system supported by the greatest number of architectures is probably
UNIX [2,22]. UNIX is a multiuser timesharing operating system originally developed by
Ken Thompson and Dennis Ritchie at Bell Laboratories in the 1970s. It is implemented

almost entirely in the C programming language, and has been ported to a wide range of

10

machines, ranging from supercomputers such as the Cray 2, to large mainframes such as
IBM’s 3090, to minicomputers such as the DEC VAX series, down to microcomputers
such as the IBM Personal Computer AT. UNIX provides a small number of services to
allow programs to make use of files and devices. The interface to most of these services

is identical across all machines running UNIX.

By programming in the C language, and using only those operating system services
provided by all versions of UNIX, it is possible to write completely portable (among
machines running UNIX) application programs. In other words, all that is necessary to
move the program to another UNIX system is to transfer the source code and recompile
it. By using only the portable UNIX functions, portability is increased to many non-
UNIX machines since many of the UNIX functions are simulated by the C libraries on
these machines. For example, many programs can be moved to a PC-DOS (the standard
operating system of the IBM Personal Computer family) based machine by simply recom-
piling them with one of the many good PC-DOS C compilers and their UNIX support

libraries.

Some attempts have also been made in the development of portable operating sys-
tems [4]. The basic premise is to write the operating system in such a way that it is easily
ported, and then to write many application programs to run under the operating system,
When the application programs are to be ported to a new machine, the operating system
will be ported first. This is done by retargeting the compiler of the language in which the
operating system is written for the new machine, modifying the machine dependent parts
of the operating system appropriately, and then compiling the operating system for the
new machine. After the operating system has been ported, the applications can be ported
by simply recompiling them with the retargeted compiler. This requires that the applica-
tion programs deal with the hardware only through the operating system, and do not

make use of any machine dependent features.

2.2.3. Machine Architecture

Even programs written in a portable language running under a portable or widely
used operating system are not necessarily portable. A program may make implicit or

explicit assumptions about the machine it is running on. For example, intermediate

11

results of some computations may fall outside of the range of representable numbers on
one machine but not on another. Comparisons of characters for lexicographic ordering
may fail due to the use of different character sets on different machines. Thus, portabil-

ity may still be difficult to attain for some applications.

The ultimate in portability would be achieved by having a portable machine architec-
ture. Ideally, this would mean that all machines have the same CPU architecture, the
same peripherals, memory map, and speed. An application designed to run on one
machine would run on any machine. This is obviously not feasible, as the many
manufacturers would never agree on a suitable architecture. Disallowing variability
would also put an end to progress. Some work has been done in this direction however.
In the early 1980’s, Microsoft developed a standard called MSX. This standard described
a microcomputer architecture based on the Z80 CPU chip, the TMS 9918 graphics chip,
and a fixed memory map. Programs written for an MSX machine would run on any
other manufacturer’s MSX machine. A few manufacturers actually built such machines,

but they never really caught on.

Rather than actually build all machines with the same architecture, another
approach is to simulate such an ideal machine with a program. We will call this simu-
lated machine a virtual machine. This is not to be confused with the virtual machine in
operating systems such as IBM’s VM/CMS. In those types of environment, instructions
of the virtual machine are still being executed directly by the real machine; only the peri-
pherals and memory addresses are being simulated. The architecture of the virtual
machine closely reflects that of the underlying real machine. Our virtual machine on the
other hand is being simulated completely; the underlying real machine is completely hid-
den by the simulation program. This program could then be run on any real machine,
and application programs would then run on this simulated machine. This approach also

has some problems.

Since the simulated machine is a program, and this program is to run on any real
machine, there is a requirement that it be either extremely portable, or extremely small in
size. If the program is non-portable and large, the effort required to move it to a new
machine will be large. If the program is portable, the porting effort will be small in rela-

tion to the development cost of the applications that are to run on the simulated machine.

12

If the program is small and simple, both the porting effort and development cost will be

small.

Since our simulation program must completely hide the architecture of the physical
machine (and its operating system, as we will see later) insofar as this architecture differs
from that of our virtual machine, it will necessarily be quite machine dependent. We
must therefore make the simulator small, since we cannot make it very portable. Thus,

our virtual machine must be very simple and well thought out.

Another problem with simulating an ideal architecture is the performance penalty
involved. Instruction sets of most CPU’s are implemented in microcode, a low-level
hardware oriented sequence of instructions that is interpreted by the hardware inside the
CPU. This hardware is very fast, resulting in a high instruction execution rate. In imple-
menting our virtual machine, we are effectively writing microcode at a higher level.
Each instruction of our virtual machine is written in terms of several instructions of the
physical machine. Therefore, the execution speed of the virtual machine will necessarily

be slower than that of a real machine.

Each instruction executed by our virtual machine will have associated with it some
minimal overhead in execution time. Even an instruction that does nothing needs to be
fetched, and the program counter needs to be incremented. It is very important for per-
formance then that the overhead for instruction fetching and decoding be minimized in
our virtual machine implementation. Another way to minimize the percentage of time
spent fetching instructions is to make each instruction perform many operations. For
example, one could implement an instruction that increments a loop index, checks the
termination condition, and performs the appropriate branch. Unfortunately, this conflicts
with our earlier requirement that the virtual machine must be simple to implement.
Thus, there are compromises to be made in the design of the virtual machine; it must be
simple enough to implement on almost any real machine, and it must be fast enough to

run programs at a reasonable speed.

An example of the successful application of the portable architecture approach is the
Pascal-P system developed at ETH Ziirich [15]. Here, a portable Pascal system was
desired for student use. The compiler was written in Pascal, and generated code for a

hypothetical stack machine. This stack machine is relatively easy to implement, so

13

porting the compiler consists of implementing the stack machine on a new computer and
transferring the executable code image of the compiler to the new computer and running
it on the stack machine. The compiler can then be used to compile code on the new
machine. A related project is described, complete with source code for the compiler and
the stack machine interpreter, by Niklaus Wirth in "Pascal-S: A Subset and its Implemen-
tation" [23]. Performance in either of these examples was not of paramount importance,
since the compiler and interpreter would only be used to compile and run small student

exercises.

2.3. A Hybrid Approach

As was shown, the choice of programming language, operating system, and machine
architecture all contribute to portability. A portable architecture would allow all other
portability concerns to be ignored, since the programs would run in the same (in every
detail) environment on all machines. Even I/O devices and file system differences could
be hidden. Effective use of a widespread language and operating system combination

would allow portability to a wide class of machines.

When porting an existing program however, little can be done about the portability
of the program itself. The program could be rewritten with portability in mind, but this is
only feasible if it is then to be ported to many machines, amortizing the cost of rewriting
the program. In some cases however, the program might be almost portable. By this we
mean that the original implementation was intended to be portable across a wide class of
machines, and we have only to extend that class. The solution we will propose is to emu-

late those features common to the original class of machines, on the new machines.

To accomplish this, we must identify what it is that makes the program non-portable
to the new machines. It is not necessary to hide all differences between the existing and
new machines, but only those differences that would affect the operation of the existing
program. These might include dependencies on word size, assumptions about addressing,
or usage of operating system facilities. We then implement an ideal virtual machine that
mimics the operation of the class of machines to which the program is portable, and pro-
vides all the operating system facilities which the program uses. This ideal virtual

machine is simply another program which is then run on the new machines, under the

14

operating system used by that machine. Our goal is to make it impossible for the pro-
gram running on the virtual machine to determine that it is not running on a real machine

to which it would be portable.

After designing a virtual machine, we must develop all the necessary tools to port
programs to this machine. These tools include such utilities as compilers, assemblers, and
debugging aids. The development of such tools is a very time consuming endeavour, and
is worthwhile only if the application program absolutely must be ported, the application is
very large and therefore even more time consuming to rewrite for the new machine,
many applications will be ported using these tools, or these tools will allow the application
to be ported to many new machines. In other words, this is not a rapid way to port a
non-portable program; it is a slow (but still faster than actually porting the program) way
to make a large program very portable. It may in some cases actually be the only way a

port is possible.

The Portability of Maple

The Maple symbolic computation system was written in Margay. Margay is both a
macro preprocessor, and the language accepted by that preprocessor. There is no official
definition of Margay; it simply evolved from simpler macro preprocessors, with new
features being added by Maple’s authors as they were required. The main purpose of
Margay is to hide the syntax of declarations used by the underlying language (C or B)
from the programmer. Margay also provides a limited form of abstract data typing. For
example, many variables in the Maple kernel are of type pointer to pointer to pointer to

integer. To declare several such variables, the following declaration is used in C:
int ***a/ ***b' ***C,'

Note that the base type, int is only specified once, but the levels of indirection must be
specified separately for each variable. Margay on the other hand allows the definition of
new types (as macros), and then allows declarations of that type to be made. For exam-
ple, the type ALGEB is used to refer to data structures in the Maple kernel. The defini-
tion of ALGEB is pointer to pointer to pointer to integer. The C declaration shown

above would then be rewritten thus:
LOC(ALGEB) a, b, c:

This can also be accomplished using the typedef facility of C, but such a facility does not
exist in B and in many early C compilers. By using Margay, only the macro definitions
need be changed. All actual declarations can be left unmodified. The kernel of the
Maple system, which performs functions such as arbitrary precision arithmetic, simple dif-
ferentiation, and interpretation of the Maple programming language, is written in terms

of these Margay macros and C language control structures.

When Maple was first implemented, no C compiler was available to its authors.
Only an implementation of B, the predecessor of C, was available. B has most of the
same control structures as C, but lacks the concept of typed data. All variables are con-
sidered to be words, and their interpretation is left to the operators that are applied to

them. There are no structured types such as the structs of the C language (early C

15

16

compilers also lacked the struct facility). Consequently, there are no bit field types
either. With only a B compiler at hand, and an intention to use C in the future, Maple’s
authors wrote the Margay preprocessor and a collection of macros with which to express
type declarations and keywords not available in B. Maple was then written in terms of
these macros and passed through the preprocessor before compilation by the B compiler.
When a C compiler eventually appeared, it was only necessary to change the definitions
of the macros so that the preprocessor would transform the Maple source code into C

instead of B.

Using these techniques, the authors took great pains to ensure portability to other
machines. The initial implementation machine used a 36 bit word size, but the Maple
source code only assumed a 32 bit word size since later machines might not have 36 bits

per word.

3.1. Portability to 16 Bit Machines

Unfortunately, the portability effort also resulted in the greatest portability problems
when it was time to port Maple to a 16 bit machine. Since the Maple source code had to
be acceptable to both B and C compilers, only the features of C that were also features of
B were used. Macros were used to preprocess simple type declarations (which would be
preprocessed out for B), but no attempt was made to make use of C’s powerful data
structuring facilities. Data structures in Maple consist of a sequence of machine words,
the first of which is packed with various information about the structure. In a pure C
implementation, this would have been accomplished using the bit field facilities of the
language, but this could not be done because B had no such facilities. As a result, the
information in the first word of each structure was accessed using the masking (&,|) and
shifting (<<,>>) operators along with appropriately defined constants. Thus, the
assumption that the word size is at least 32 bits became thoroughly engraved into the
code. In order to compile Maple on the IBM Personal Computer, it was necessary to
change all declaration of the C type int to long int. Similarly, all constants used in func-
tion calls had to have "L" appended so that they would be passed as long integers (2
words) instead of integers (1 word). Newer compilers conforming to proposed ANSI C

standard would alleviate this problem by allowing the use of function prototypes.

17

3.2. Portability to the IBM Personal Computer

Another assumption made in the Maple source code was also invalidated when
attempting to port to the IBM Personal Computer. All machines that Maple had previ-
ously been ported to had a single large linear address space. This means that memory
addresses begin at 0, and increase by 1 until the last addressable location is reached. As
a result, an address is simply an unsigned integer giving the location of a byte or word
relative to the lowest such location. The Maple code treats integers and pointer types as
completely interchangeable, often assigning two pointer values to two integer variables,
and performing a comparison of these two variables at some later point in the code. This
is perfectly legal (although somewhat "immoral" in the author’s opinion) on machines

where the assumption holds.

The CPU of the IBM PC (the Intel 8088 or 80286 [9]) family uses a different
addressing scheme. Since all registers are only 16 bits, but the 8088 can address one
megabyte of memory (requiring 20 bit addresses), a two part addressing scheme is used.
The CPU contains four segment registers, one for code, one for data, one for the stack,
and one for the heap. Whenever a byte is addressed, the appropriate segment register is
shifted left four bits and added to a 16 bit address offset. The segment register used
depends on what is being fetched: code, data, etc. although explicit segment overrides are
possible. Addresses are written as two numbers, separated by a colon (:). The first
number indicates the segment, while the second indicates the address offset within the
segment. For example, the hexadecimal address 0100:0200 represents the physical
address 01200. Because of the mechanism used to compute physical addresses, there is
more than one logical representation for each address. The addresses 0000:1200,
0080:0A00, and 0120:0000 all represent the same physical address as our first example.

For each physical address, there are 4096 distinct representations.

The 80386 CPU, used in the high-end models of the latest generation of IBM per-
sonal computers, also has a segmented address space. With this CPU however, segments
and offsets are each 32 bits, so that a single segment is 4 gigabytes in size. By restricting
oneself to a single segment, one effectively has a single large linear address space. A port

of Maple to the 80386 was carried out by simply recompiling Maple on such a machine.

18

C compilers for the 8088 generate code to normalize addresses before comparing
pointer valued objects. A normalized address is one in which the address offset is always
between hexadecimal 0000 and 000F. Thus, there is only one normalized representation
of each physical address. By treating the two parts of the normalized address as one 32
bit double word, an arithmetic comparison of the two pointer values can be made. How-
ever, when a pointer value is assigned to a (long) integer variable, it is not first normal-
ized. If two such values are assigned to two such variables, and the variables are then
compared, the comparison can, and probably will, give erroneous results. For example,
consider the two physical addresses 01200 and 01201. If the first was represented by
0080:0A00 and the second by 0000:1201, and these representations were treated as long
integers and compared, then the first would appear to be larger than the second even
though the first address precedes the second. The compiler can only generate code to
make correct address comparisons if it knows that addresses are being compared. When

comparing two long integers containing addresses, such as in the following C statement,
if (i == j) break;

the compiler can be coerced into making the correct comparison by using C’s type casting

facility to cast the integer values into addresses:
if ((void *)i == (void *)j) break;

This tells the compiler to assume that i and j contain addresses and to perform the
appropriate normalizations before making the comparison. The problems with this
approach are twofold. First, it would be necessary to examine the entire Maple source
code to find all comparisons of integers that contain addresses, and insert the appropriate
type casts. Secondly, not all of these comparisons are always comparing addresses; the
variables may sometimes contain actual integer values, which normalization would invali-
date. This use of variables to hold different types arises from Maple’s internal data struc-
tures, which are simply declared as an array of pointers. The individual fields are

allowed to hold any word sized value however.

The integer size and the representation of addresses are the two major obstacles to
generating correct code for Maple on the IBM Personal Computer. An attempt was

made to make all the necessary changes to the source code to compile a functioning

19

version of Maple. After about two weeks of effort, Maple was finally compiled, using
version 3 of the Lattice C Compiler. The result however was not worth the trouble. The
size of the code image was 378 kilobytes, which is nearly three times the size of the 140
kilobyte code image on a VAX 11/780. With a limit of 640 kilobytes of memory avail-
able to programs running under PC-DOS, this large code image would not leave sufficient

space for Maple to perform any useful work.

The unusually large code image was due to several factors. Performing operations
on 32 bit integers on an 8088 is very expensive in terms of time and space. For example,
consider the code generated for the statement i += j where i and J are declared as local

long integers:

les ax, [bp-8] ;load MSW of j into ES and LSW into AX
mov dx, es ;move MSW of j into DX so DX:AX == j
add [bp-4], ax ;add LSW of j to LSW of i

adc [bp-2],dx ;add MSW of j and Carry to LSW of i

Compare this with the code for the same operation as generated on a VAX 11/780:
addl2 -8 (fp),-4(fp) cadd j to i

The 8088 code requires far more instructions to perform this operation. Operations such

as long integer multiplication are even more expensive.

Similarly, dereferencing a pointer to fetch or store a value is also a complicated
operation on an 8088. Consider the code generated by the assignment *ip += *jp where
ip and jp are declared locally as pointers to long integers. For the 8088, the following

code would be generated:

20

les di, [bp-2] ;load MSW of jp into ES and LSW into DI

es: ;use Extra Segment for next instruction
les ax, [di] ;load MSW of *jp in ES and LSW into AX
mov dx,es ;move MSW of *jp into DX so DX:AX == *jp
les di, [bp-4] ;load MSW of ip into ES and LSW into DI
es: ;use Extra Segment for next instruction
add [di], ax ;add LSW of *jp to *ip

es: ;use Extra Segment for next instruction

adc [di+2],dx ;add MSW of *jp and Carry to *ip
Compare this with the code for the same operation as generated on a VAX 11/780:
addlz *-8(fp),*-4(fp) ;add *jp to *ip

Pointer comparisons are even more expensive than dereferencing since code must be gen-
erated to normalize each pointer on the 8088. This code would consist of at least a func-
tion call to a normalization routine, taking 3 or 4 bytes for each pointer variable refer-

cnce.

If we were to attempt to compile the same code with one of the better C compilers
available for the IBM PC today, such as the Borland International Turbo C compiler, or
the Microsoft C compiler, smaller code would probably result. These newer compilers
can be told to keep pointers normalized at all times. Comparisons would thus be faster,
and assignments to long integer variables would result in values that could be correctly
compared. They are also better at eliminating redundant reloads of segment registers,
thus reducing the size and execution time of pointer operations. However, the problem
of performing 32 bit arithmetic still exists. If we were to attempt to run the code on the
now common 80286 based personal computers, it would be possible to bypass the operat-
ing system (since PC DOS runs in the 80286’s real mode, which effectively limits address-
ing to one megabyte) and access that processor’s entire 16 megabyte address space, mak-

ing the size of the code image less of a problem.

There are many things that could be done to force Maple to run on an IBM compati-
ble computer, but none of these would contribute to its general portability. Rather than

expend an incredible amount of effort just to port to one class of machine, a more general

21

solution might be desirable. Either a PC specific solution or a more general solution

would require a great deal of effort, so the general solution is desirable in the long run.

The Maple Machine

This chapter discusses the history of the Maple Machine, and examines the goals
which directed its development. The Machine architecture and the design decisions

involved are then described in detail.

4.1. History

After attempting to port Maple to the IBM Personal Computer in August 1986 by
massaging the source code and compiling it with a commercially available C compiler,
and meeting with no success, it was decided that a different approach was needed. The
original idea conceived by the author was to write a program that would emulate a
specific larger computer (most likely the VAX 11/780), so that the executable Maple ker-
nel could actually be ported. This idea was quickly discarded as it would be far too inef-
ficient. Professor Gaston Gonnet of the Symbolic Computation Group at the University
of Waterloo suggested the development of a higher level architecture, which could be
implemented in software with some hope of reasonable performance. In other words, a
program would be written that would emulate a computer architecture especially suited to

running Maple.

This idea initially met with opposition, due to the potential enormity of the task
involved, but the author managed to make a case for trying it. Several factors influenced

the decision.

The primary objections to the project were that it would be too slow, and that it
would take far too much time to write a C compiler that would generate code for the

emulated architecture.

The first objection was overcome by suggesting that the emulator did not have to
emulate a machine with the traditional architecture and relatively low level instruction
set. The machine could be tailored to the C language, providing simple yet easily appli-
cable primitives that correspond to C language features, thereby increasing performance

over a straight-forward register based machine emulation.

22

23

The difficulty of writing a C compiler was minimized by the availability of a public
domain implementation of C known as Small-C. This was a compiler for Intel 8080
based machines, written by Ron Cain, and first appeared in the May 1980 issue of Dr.
Dobbs Journal of Computer Calisthenics and Orthodontia. This was enhanced by James
Hendrix and republished in the December 1982 issue, and in a book devoted to the com-
piler [8].

4.2. Goals of the Maple Machine

There were several design goals for the development of the Maple Machine, which

had a profound influence on its architecture.

First and foremost, the machine had to be suitable for running Maple on, assuming
the existence of a compiler for it. This called for a 32 bit word size, and a single large

linear address space, as Maple assumes both in many places in its source code.

The next most important requirement was that both the Machine itself and the code
that it runs be compact. By keeping the Machine small, it would remain easy to port.
By keeping both the Machine and the code that runs on it small, it would be possible to
use it to run Maple on the IBM Personal Computer in the 640 kilobytes of space avail-
able. These goals required a relatively small instruction set, as well as a compact encod-

ing of these instructions.

Another important requirement was fast execution speed. Maple is a relatively fast
symbolic computation system, so some loss of performance could be tolerated. However,
the final Maple Machine would be running on an IBM PC, which is at least an order of
magnitude slower than a VAX 11/780. Thus, any performance loss due to interpretation

would be magnified by the performance loss due to the slower hardware.

Finally, the Maple Machine had to be easy to generate good code for. The compiler
available did not perform any global optimizations, and would have been difficult to
modify to do so. Samples of the 8080 code generated by the compiler indicated that it
was not a very good compiler, due in part to the difficulty in generating good code for the
8-bit 8080 chip. The instruction set of the Maple Machine would have to be geared

towards what the compiler could generate efficiently.

24

4.3. Design

With these goals in mind, the process of designing the Machine’s architecture was

begun.

Early discussions centered on the idea of a machine that would execute Polish prefix
notation. This is basically a functional notation, in which each operator precedes its
operands. For example, one way of writing a prefix notation for the assignment x = y 4+

2 * z would be:
assign(x, sum(y, product(2,z)))

Such a notation, when expressed in a well designed machine readable form, could be very
compact. It would also be fairly straightforward to have a C compiler generate code in
this notation, since it essentially represents a pre-order traversal of the parse tree built up
during the compilation process. However, execution of such code would require a recur-
sive interpreter. Such an interpreter would call a procedure to execute the first operator,
which would then call procedures to evaluate the operands, and so on. The stack of such
a machine would be implicit in the run-time stack of the emulation program, making
implementation fairly simple, but performance would be poor due to the excessive

number of function calls involved.

After eliminating a Polish prefix architecture, a Polish postfix architecture was con-
sidered. This appeared to be more promising, since the instructions in such an architec-

ture could be executed by a simple loop and a stack data structure.

An article by Daniel Miller in the April 1987 issue of Byte Magazine [13] discussed
the suitability of the Forth language as the output of a C compiler. Forth is a low level
language originally designed by astronomer Charles Moore to control telescopes [14].
Forth appears to the programmer as a sort of Polish postfix assembly language for a stack
based machine. Miller’s article showed that this type of code was easily generated by a

recursive descent compiler such as that for Small-C.

Other examples of stack based machine architectures also indicated positive results in
terms of simplicity of implementation and compiler design. The Pascal-P [15] and
Pascal-S [23] systems designed at ETH Ziirich both used similar stack based architectures
that were emulated by an interpreter program. Niklaus Wirth’s Lilith machine [17,25]

25

was a hardware implementation of a stack based architecture designed specifically to run

Modula-2 programs [24].

Tannenbaum [20] showed that a stack machine was very well suited to structured
programming languages such as Algol, Pascal, and BCPL. Code size for such a machine
was typically one third of that for the same program compiled for a conventional

machine. In addition, generating code for such a machine was fairly straight-forward.

Since a stack architecture would result in a smaller code image size than a conven-
tional register based architecture, fewer instructions would have to be fetched, and there-
fore less time would be spent in the instruction fetching code of the emulator. As a

result, execution would be faster.

With all this evidence pointing to the suitability of a stack machine both for ease of

compilation and reduced code size, it was decided that this was the ideal approach.

4.3.1. The Programmer’s Model

Usually, when describing the architecture of a real computer, a diagram showing the
internal architecture is presented. This diagram is an abstraction that represents the
machine as an assembly language programmer would perceive it. Such a diagram and
the accompanying text describes the programmer’s model. We will describe the architec-
ture of the Maple Machine the same way, except that there is no real machine on which
the diagram is based. The abstraction is implemented directly as a computer program.

This of course does not preclude a hardware implementation of the Maple Machine.

Figure 1 shows the basic structure of the Maple Machine. The left side of the
diagram represents the Machine’s addressable memory, while the right side shows all the

internal registers and the subroutine call return stack.

26

| Program counter
Code
and
Handler pointer
Data G———J—_—
arge "] Argument pointer
argv
. Stack pointer
Evaluation
and
Frame pointer
Display
Stack
Return pointer
argv[0]
: —>
- Return
argv[n]
Stack
*argv[0]]
. Return value
T
*argvin]
=} Environ pointer
Environment
Area
=] — Break pointer
Free
Heap

Pigure 1. The architecture of the Maple Machine.

The main memory of the Maple Machine is simply a contiguous set of addressable bytes.

Each byte contains 8 bits. The first byte has address zero, and each subsequent byte has

27

an address one higher than its predecessor. Unlike most real machines where such details
are a feature of the operating system, the Maple Machine imposes a predefined order on
the things that are loaded into memory. There are also several pieces of data that are put
into the memory by the Machine before program execution commences to allow the pro-
gram to receive information from the environment in which the Maple Machine is run-

ning. These are described in more detail later.

The instructions and static data of the program that is to run on the Maple Machine
are loaded into memory starting at address zero. Following this are the two parameters to

the program’s main procedure, which are discussed in detail in Chapter 6.

Following these is the evaluation stack, which is used to hold temporary results, pro-
cedure arguments, and local variables. After the stack is more parameter information for

the main procedure.

The environment area is a "scratch-pad” in which some of the built-in functions store

data so that a pointer to this data can be passed back to the executing program.

Finally, the heap consists of all the remaining memory. This can be allocated by the

Maple Machine when the program requests it.

A program counter points to the byte containing the next instruction to be executed.
When a program is first loaded into the Machine, the program counter is set to point at
the program’s entry point. This is defined by the global symbol main in the assembly
language code of a Maple Machine program. The Maple Machine is a load-and-go
machine. There is no operating system or monitor program; a program is loaded and
execution begins when the Maple Machine is started. All development software for the

Machine must run on either the underlying real machine, or some other real machine.

The handler pointer points to the instructions to be executed if the program running
on the Maple Machine is interrupted by the user. There is a built-in function in the
Machine’s instruction set to set this pointer. If the user interrupts the Machine itself
before this pointer has been set, then a default handler stops the Machine and control

returns to the host environment.

28

The argument pointer points to the location in the stack of the first argument passed
to the currently active procedure. The next argument is found at an address 4 bytes
higher than the first, and so on. This pointer is set by the Maple Machine during a pro-

cedure call.

The frame pointer points to the location in the stack of the first local variable of the
currently active procedure. The next variable is found at an address either 1 byte or 4
bytes higher than the first, depending on whether the first was byte sized or word sized.

This pointer is set automatically during a procedure call.

The stack pointer points to the first word-aligned address (the address is a multiple
of 4) after the last local variable. Any temporary results or parameters to further pro-
cedures are stored on the stack at or beyond this location. Word alignment is used since
stack accesses are quite frequent, and many real machines impose a performance penalty

when fetching words from non-aligned addresses.

The return pointer points to the next available location in the return stack. The
return stack is used to hold the information associated with procedure activation. This
includes the current values of the program counter, and the argument and frame pointers.
The return stack was kept separate from the evaluation stack because the author finds it
conceptually simpler that way; one does not need to consider the size of the return infor-

mation when computing argument and local variable addresses.

The environ(ment) pointer holds the address of the environment area. This address
is effectively constant for the duration of the execution of a Maple Machine program, and
is returned to the program executing on the Machine whenever the built-in function

getenv() area is called.

The break pointer contains the address of the first unused byte of the Machine’s
memory. A program can call the built-in memory allocation function to return this
address, and increment the break pointer by some amount, thus allocating some memory

for the program’s use.

29

4.3.2. The Evaluation Stack

The evaluation stack is used for two purposes: to hold operands and results of

instructions, and to hold procedure parameters and local variables.

Instructions such as "+", "*", and NOT each pop one or two values off the evalua-
tion stack, perform the indicated operation, and push the result back on the stack. Other
instructions may not push anything back on the stack, such as "!", which pops an address
and a value off the stack and then stores the value at the memory location specified by

the address. Figure 2 illustrates the execution of the "+ " and "I" instructions.

Stack Before Stack After

le<=<J}——{ Stack Pointer

137 .
~29 108

Figure 2(a). Execution of the "+" instruction.

Stack Before Stack After
j<<}——— Stack Pointer
2345
29 —
Main Memory After
2344 2345 2346 2347 2348 2349

I I
32-blt representation of 29
1 1 1

Figure 2(b). Execution of the "!" instruction.

Before a procedure is called, any parameters to that procedure are pushed on the evalua-

tion stack. If the call is an indirect call, the address of the procedure to be called is

30

pushed next. Finally, a count of the number of parameters is pushed. When the pro-
cedure call instruction is executed, the count (and the address if the call is indirect) is
popped and control transfers to the called procedure, which may then allocate further
space for its own variables. The details of these operations, complete with the effect they

have on the various pointer registers, are described in the next section.

Since the evaluation stack holds local variables, and the Maple Machine is designed
to run C, which allows one to compute the address of any variable, the evaluation stack

(unlike the return stack) is allocated in the Maple Machine’s address space.

4.3.3. The Return Stack and Procedure Calls

The return stack is used to store the current values of the program counter, frame
pointer, and argument pointer registers when a procedure call is made. These registers
are restored when the called procedure terminates with a RETURN or RETVAL instruc-
tion. Notice that the stack pointer register is not saved. When a procedure terminates,
the stack pointer is set to the value of that procedure’s argument pointer, effectively
unstacking all local variables and actual parameters. This obviates the need for separate
instructions to adjust the stack after a call returns, thus reducing execution time overhead.

Figure 3 illustrates the procedure calling mechanism.

31

Initial After After
State Pushing Executing
St:gk 2;%3:: Instgﬁggion
SP —
2 —P 2 RP
newl FPH- newl
lg—isp new0 new0 lsligg;n
loc3 loc3 AP L-J loc3
loc2 loc2 loc2 old AP
locl locl locl old FP
locO0 [&G—{FP locO loc0 |G ret ad
arg2 arg?2 arg?2 :
argl argl argl T
arg0 AP arg0 arg0

Figure 3. Procedure calling sequence.

The return stack is only accessed by the internal workings of the Maple Machine, and not
by any program running on the Machine. The mechanics of procedure calls are not stan-
dard from one real machine to the next, so no portable C program would ever try to
access values such as the return address or stacked frame pointer. Therefore, the return

stack need not occupy the Maple Machine’s address space.

32

4.3.4. Instruction Set

Instructions in the Maple Machine’s instruction set can be broken into several

categories:

Constants
Arithmetic
Bitwise Logical
Boolean
Comparison
Stack Operations
Memory Access
Control Flow
Hybrids

e NI TR SR

Each category is discussed separately below. The notation used to describe each instruc-

tion is a follows:
OPCODE STACK-BEFORE STACK-AFTER

For each of the stack pictures, only the elements of the stack relevant to the instruction
are shown. The top of the stack is on the left. Symbols such as X , Y, and Z represent
values on the stack. A string of the form [X] represents the value at memory location X.
The symbol "™ indicates that there is currently nothing on the stack that will be used or

has been used by the instruction.

There are also several instructions that cannot be written in the Maple Machine’s
assembly language. Instead, these instructions are generated by the optimizer at assembly
time. Most of these are single instructions that perform the work of a sequence of two or
more other instructions. These are described in detail in Chapter 7 when we deal with

improvements to the system.

In addition to actual Maple Machine instructions, there are also several pseudo-
instructions, or assembler directives. These tell the Maple Machine assembler to allocate
storage, manage control structures, or declare procedures. These are described in

Chapter 5 when we discuss the assembler.

33

Constants

The Maple Machine has several representations for constants. In the Maple
Machine assembly language, all constants are written as signed decimal integers (Maple
4.2 does not make use of floating point arithmetic internally, so it was not implemented).
The assembler then selects the smallest internal representation that is large enough to
describe the constant. Since small constants such as 0 or 1 are very common in programs,
a great space savings is realized by this approach. The semantics of a constant are as fol-

lows:

a_number a_number

Arithmetic

Arithmetic instructions can be divided into two further categories: unary operations
and binary operations. Unary operations pop one value from the stack and push one
value, while binary operations pop two and push one. The standard symbols of the C

programming language will be used in describing the results on the stack below.

+ X Y X+Y
- X Y X-Y
* X Y X*Y
/ X Y X/Y
% X Y XqY
NEG X -X
++ X X+1
-- X X-1
W+ X X+4
W- X X-4
SCALE+ Xy X+4*Y

Most of these are self explanatory, but the last three deserve some clarification. In C,
when the "+ +" or "--" operators are applied to a pointer variable, that variable is incre-
mented or decremented by the size of the object to which it points. The two most com-

mon types of objects to which a pointer would point are characters and integers. Since

34

integers are 32 bits, which corresponds to 4 bytes, the operations of incrementing and
decrementing by 4 are quite common. The W+ and W- instructions perform this using
only a single instruction, instead of the equivalent sequences "4 +" and "4 -". The
SCALE+ instruction is used in array indexing. If i is an array of integers, then the
expression i[j] would refer to the integer that begins 4; bytes (j words) past the beginning
of the array. Without the existence of the SCALE+- instruction, the generated code to
fetch this integer would be,

i?2 324+ + 7
where "?" is a fetch instruction. Using SCALE+, this is reduced to,
i ? j ? SCALE+ ?

a savings of two instructions, and hence the overhead involved in two instruction fetches.

Bitwise

Bitwise instructions can also be grouped into unary and binary categories, according

to the number of operands they pop. The bitwise instructions are:

& XY X&Y

| XY X|Y

" Xy Xy

<< XY X<<Yy

>> XY X>>Y

~ X “X
Boolean

The Boolean instructions deal with truth values. Truth is represented by any non-
zero integer, while falsehood is represented by zero. The result of any Boolean instruc-

tion is always either 1 (true) or O (false). The Boolean instructions are:

35

BNOT X X
BOOL X X

As with almost all real machines, there are no instructions for Boolean AND or OR
(corresponding to "&&" and "|" in C), because these are evaluated by conditional branch-
ing, thus skipping any further evaluation when the result of an expression becomes

known. For example, the C expression,
a && b || ¢

would compile into the following Maple Machine code:

a ?
DUP
IF
POP
b ?
ENDIF
DUP
IEFZ
POP
c ?
ENDIF
Comparison

Comparison instructions take two values from the stack, and return a Boolean value
(1 or 0) depending on whether or not the comparison holds. The comparison instructions

are:

36

< XY X<y
> XY xX>Y
<= XY X<=Y
>= XY X>=Y
== XY X==Y
1= XY X1=Y
U< XY X<y
U> XY X>Y
U<= XY X<=Y
U>= Xy X>=Y

The last four operators differ from the first four only in that the comparisons are made
with the assumption that X and Y are unsigned quantities. The Maple Machine’s C com-
piler does not support the unsigned data type, but unsigned comparisons are generated for
pointer values. In practice, signed comparisons would suffice so long as the size of the
address space does not exceed the largest positive signed number. The port of the Maple
Machine to the Oberon system, for example, did not differentiate between signed and
unsigned comparisons. Future Maple Machine implementations may eliminate the

unsigned comparison operators.

Stack Operations

These instructions are used to manipulate the contents of the stack. They are often
generated by the compiler in order to prepare the stack for a sequence of other opera-

tions. The stack instructions are:

DUP X X X

POP X ~

ROT XY Y X X

SWAP XY Y X

STACK X N1 N2 ... NX

Forth programmers will recognize most of these by name, although the ROT instruction
does not do the same thing as the Forth ROT instruction, instead it performs the
equivalent of DUP followed by the Forth ROT instruction.

37

The STACK instruction pops a value off the stack, and then pushes that many unde-
fined words back onto the stack. In actual fact, the stack pointer is simply adjusted as if .
that many words had been pushed. This is used in procedures to allocate space for local
variables. STACK can deallocate space by supplying it with a negative operand, although
in practice this feature is rarely used since a RETURN or RETVAL instruction will

automatically deallocate any space that the procedure allocated.

Memory Access

The memory access instructions are used to fetch the values of variables from

memory, and to store values to variables in memory. The fetch instructions are:

? X [X]
B? X [X]

These two instructions expect an absolute memory address on the stack, and return the
word (?) or byte (B?) stored at that address. When a byte is fetched, it is converted to a
word by setting the three most significant bytes of the word to zero. Values that have
been pushed on the stack (as opposed to allocated in the stack space and then stored

there) are always whole words.

For each fetch instruction, there is a corresponding store instruction that has the

opposite effect. The store instructions are:

! XY ~
B! XY ~

These instructions store the value X into the word (1) or byte (B!) whose address starts at
Y. In the case of B/, only the least significant byte of X is stored.

There are two more instructions which are not really memory access instructions, but

are used in computing addresses for use by memory access instructions. These are:

38

$+ X FP+X
F#+ X AP+X

These compute an address by adding an offset X to the current value of the frame pointer
or argument pointer registers. They are used for computing the addresses of local vari-

ables and procedure parameters respectively.

Control Flow

Several instructions are used to manage the flow of control. When examining a
Maple Machine assembly language program, one might encounter other instructions that
appear to be control flow instructions, but these are merely assembler directives that may
generate one of the instructions described in this section. The assembler directives are

discussed in detail in a later section.

The following instructions are associated with procedure calling and return:

CALL XY ~
RETURN ~ ~
RETVAL X ~
VAL? ~ X

The CALL instruction is used to perform an indirect procedure call. The program first
pushes the address of the procedure to call on the stack, followed by a count of the
number of arguments that were pushed before that. In the description above, a call

would be made to the procedure at address Y, with X arguments.

There is also another form of the call instruction that is generated by the assembler
when a procedure identifier is encountered in the source text. This instruction has the
calling address coded into the four bytes following the instruction, thus obviating the need
to first push the address and then pop it. This instruction is generated for normal pro-
cedure calls, while the CALL instruction described above is generated for indirect pro-
cedure calls, such as is performed through a C pointer to a function. The direct (normal)
procedure call instruction has no mnemonic since it is never written explicitly. This was
inherited from Forth, where a procedure is a sequence of words, some of which are

built-in primitives, while others call user defined procedures.

39

When a CALL or direct procedure call instruction is executed, the address to which
execution should eventually return is pushed onto the return stack. For a CALL, this is
the current value of the program counter (which has already been incremented by the
instruction fetch code). For a direct procedure call, this is 4 more than the program
counter, since the address of the called procedure follows the instruction. A fter this, the
values of the frame and argument pointers are pushed onto the return stack. Then, the
count of actual arguments is popped off of the evaluation stack and the frame pointer is
set equal to the stack pointer. The argument count is then subtracted from the frame

pointer to yield a new value for the argument pointer.

When a RETURN instruction is executed, the stack pointer is set equal to the argu-
ment pointer, effectively popping all the arguments and local variables off of the evalua-
tion stack. Then, the argument pointer and frame pointer are popped, restoring the
values they had before the procedure call. Finally, the program counter is popped to

return control to the instruction following the CALL or direct procedure call instruction.

The RETVAL instruction is similar to RETURN, except that it first pops a 32-bit value
off of the evaluation stack and stores it in the return value register, where the calling pro-

cedure can retrieve it using a VAL? instruction.

The Maple Machine provides several instructions to transfer the flow of control from

one part of a program to another. These instructions are:

GOTO ~ ~
IF

IFZ
WHILEFOR
SWITCH
CASE
DEFAULT ~ ~

Lo

R
R

The GOTO instruction is followed in memory by a word giving the address of the next
instruction to execute. This word is fetched and loaded into the program counter. The
value of this word is the address of a LABEL directive, and is filled in by the assembler at

assembly time. The instruction has no effect on either of the stacks.

40

The IF and IFZ instructions perform a conditional branch. A value is popped from
the evaluation stack, and the branch takes place if the value is zero in the case of the IF
instruction, or non-zero in the case of the IFZ instruction. In other words, a zero value
causes the instructions following an IF to be skipped, while a non-zero value causes the
instructions following an IFZ to be skipped. IF and IFZ instructions are followed in
memory by a word giving the address of the instruction to jump to in the case of a zero
or non-zero value respectively. This is the address of the instruction following the
corresponding ELSE or ENDIF directive and is filled in by the assembler at assembly

time.

The WHILEFOR instruction performs a two-way conditional branch. A value is
popped from the evaluation stack, and if it is non-zero, the word immediately following
the instruction is loaded into the program counter. If the value is zero, the second word
following the instruction is loaded into the program counter instead. The values of these
words are the addresses of the instructions following the corresponding BEGINFOR and

ENDFOR directives respectively, and are filled in by the assembler at assembly time,

SWITCH performs a multi-way branch analogous to the C switch statement, which
occurs frequently in the Maple kernel source code. The CASE and DEFAULT instructions
are effectively labels to which to branch to, depending on the value popped off of the
stack. The best way to describe the usage of the SWITCH instruction is to give an exam-

ple. Consider the following piece of C code, where a and b are global integer variables:

41

switch(a) {

case 1:

b =1;

break;
case 2:
case 3:

b = 2;

break:
default:

b = 3;

b

This would compile into the following Maple Machine assembly language code:

a ?
SWITCH
CASE 1
1 DUP
b !
POP
BREAK
CASE 2
CASE 3
2 DUP
b !
POP
BREAK
DEFAULT
3 DUP
b !
pPoP
ENDSWITCH

BREAK and ENDSWITCH are assembler directives discussed in a later section. The

42

SWITCH instruction is followed in memory by a word giving the address of the first CASE
instruction. Each CASE instruction is followed by a word giving the address of the next
CASE instruction. The very last CASE instruction in the sequence is followed by a word
giving the address of the DEFAULT instruction, if any (even if the DEFAULT instruction
lexically precedes the last CASE instruction), or the first instruction after the ENDSWITCH
if there is no DEFAULT. Following the next-CASE pointer of each CASE instruction is a
one to five byte value giving the constant that followed the CASE instruction in the assem-
bly language source code. The structure of an assembled SWITCH statement is illustrated

in Figure 4.

43

SWITCH

CASE ==

GOTO

CASE Q—J

CASE <

GOTO

DEFAULT G——l

L

]

Figure 4. Structure of a SWITCH statement.

When a SWITCH instruction is executed, a value is popped off of the stack. The Maple
Machine then traverses the chain of CASE instructions until it finds one that is followed
by a constant matching the popped value, or it reaches the end of the CASE chain. Exe-
cution then continues from that point. A more efficient form of the SWITCH statement is

discussed in section 7.2.3.

44

Hybrids

Since the Maple Machine was designed for running one particular C program, addi-

tional instructions could be added to perform common operations in this program.

The Maple kernel repeatedly performs several operations that are a combination of a
few C operators. Normally, such a sequence of operations would be a candidate for
encapsulation into a function, but for efficiency reasons, they were made into a macro
instead. The sequences are quite short and the overhead of calling a function to perform
them would be prohibitive. When the Maple kernel is passed through the Margay prepro-
cessor, the macros describing these sequences are expanded into the full sequence. For
our compiler to then recognize these sequences in the resulting source code would require
a higher level of analysis than it currently performs. Since many macro definitions have
to be changed during a port anyway, it was decided to simply undefine the macros for
these operations, so that they would be passed on to the compiler unexpanded. They
would then appear as function calls which the compiler could recognize and generate
in-line code for instead. Effectively, expansion of these particular macros has been
moved from the preprocessor to the compiler, where the compiler can better generate
efficient code for them. The current Maple Machine does this with three such macros:
ID(x), LENGTH(x), and CASEID(x). These return the identification of a Maple data
structure, its length, and a special identification used in switch statements respectively,

given a pointer to the structure. The special instructions that perform this function are:

?ID X [X] &017600000
?LENGTH X [X]&0177777
?CASE_ID X ([X]&017600000) >>16

Consider the following C code, with x declared as a pointer to an integer, and y declared

as an integer:

y = ID(x):
Y LENGTH (%) ;
Y CASE_ID (x) :

Il

The following assembly language output would result if these three hybrid instructions

were absent:

45

X 7 ?
65535 &
v !

X ??
4128768 &
Yy !

x ? ?
4128768 &
16 >>

vy !

With the new instructions however, the code becomes much shorter. The large masking
constants do not need to be stored in the code image, and there are fewer instructions.

Execution is also accelerated accordingly:

x ? ?LENGTH

1
4

x ? ?ID

X ? ?CASE_ID

1
:

4.3.5. Intrinsic Functions

The Maple Machine has been specifically designed to be a suitable target machine
for a C compiler that is compiling one particular program, namely the Maple kernel. C
programs generally make use of functions from the C run-time library, a more or less
standard collection of C functions to perform common actions such as file I/O, memory

allocation, character classification, and more.

46

The obvious way to make these facilities available on the Maple Machine would of
course be to write a run-time library in C, possibly based on the run-time library of an
existing machine. This library could then be compiled using the Maple Machine C com-
piler, and linked in with the Maple kernel or other C programs to be run on the Maple
Machine.

One problem with this approach however is poor performance. Library facilities
such as those that do I/O perform large numbers of low level operations. If these opera-
tions were to be performed by interpreted Maple Machine instructions, such facilities

would be excruciatingly slow.

Another problem is that such a library might not be portable. The code in such a
library would have to access certain aspects of the underlying hardware and/or software.
The premise of the Maple Machine makes this impossible, but even if it were possible,

the resulting code would only work on Maple Machines running on a particular host.

Since the Machine will only be used to run C programs, and probably only to run the
Maple kernel, a more suitable approach would be to provide these facilities as features of
the machine itself. This is the approach that was finally taken. This makes it possible for
a program running on the Machine to make use of the same facilities regardless of the
underlying hardware or operating system. The same code image can be run on any
Maple Machine implementation! It is up to the implementor of each Machine to ensure

that the facilities provided correspond exactly to those of any other implementation.

Ideally, there would be a separate instruction corresponding to each C run-time
library function that it to be implemented by the Machine. The problem with this how-
ever is that there are only 128 instruction codes available (since each instruction must fit
in one byte, and the 128 codes with the most significant bit set are used for short integer
constants), and 57 of these are already taken up by normal instructions. The remaining
codes are reserved for use by new instructions, as is discussed in Chapter 7 in the section

on optimization.

An alternate approach is to have one instruction that signals that the following byte
in memory identifies one of the built in functions. This is the approach used by the
Pascal-P code [15] for standard procedures such as writeln and dispose. By allocating a

whole extra byte to identify the function, up to 256 functions can be built into the Maple

47

Machine. Fortunately, the Maple kernel only uses about 30 different library functions.

When the Maple Machine interpreter encounters this instruction, which we will call
INTRINSIC, it pops the argument count from the evaluation stack, and then pops that
many arguments into an internal array. It then fetches the identifying byte, and executes
the code that implements the function. The code for the functions uses the arguments as
they are stored in the array, and returns values using the same technique as any normal

procedure call.

The Maple Machine C compiler has no knowledge of the functions built into the
Maple Machine. It generates the same code for normal function calls and intrinsic func-
tion calls. It is the assembler which has a list of all the intrinsic functions, and generates
an INTRINSIC instruction followed by an identification byte when it recognizes an intrin-

sic function.

One side effect of using intrinsic functions is that it is not possible for a C program
to compute the address of one of these functions. This would only be required if some
other function in the program needed to be passed the address of a function to execute,
and an intrinsic function was one of these. This never happens in the Maple kernel, but
if it did, it would be easily circumvented. It would only be necessary to write another
function (with a different name) to encapsulate the intrinsic function, and then pass the

address of that function. All other uses of the intrinsic function would still be direct.

The C run-time library functions implemented by the Maple Machine are briefly
described below. They are grouped by category, and listed alphabetically within each
category. For further details on the semantics of these functions, refer to the UNIX

Programmer’s Manual [2,22].

The most important functions implemented by the Maple Machine are the file I/O
functions, since it is not possible to write these to run as Maple Machine programs.
Many of these functions take a parameter indicating the file on which they are to operate.
This parameter is shown as fp in the descriptions. The value of this parameter can be
either 0, 1, 2, or a value returned by a call to fopen(). In the latter case, its value is
meaningless to the program running on the Maple Machine. It only has meaning to the
functions that require such a parameter. For example, when a Maple Machine is imple-

mented on a 32 bit UNIX based host, the value returned by fopen() is a pointer to a file

48

descriptor. This value can be represented by an integer and is returned unmodified to the
program running on the Maple Machine. It is clearly meaningless to the program, since
it has no way to access the real memory of the underlying hardware to which the value
points. However, the other file I/O routines can use this value appropriately, usually by
calling the corresponding routine in the host’s C run-time library. On other Maple
Machine implementations, the value returned by fopen() could be an index into a file
table, or any other value meaningful to the underlying implementation. The following C

file /O library functions are supported:

fclose (fp)
The file referred to by fp is closed. Any output that was not yet physically written to
disk will be.

fflush (fp)
Any buffers associated with the file referred to by fp are flushed, that is, physically
written to disk. On some underlying machines, this function may not actually do

anything.

fopen (s, m)
Opens the file with the name pointed to by s and the mode pointed to by m. Both
the name and mode are strings in the Maple Machine’s memory space, and s and m
are Maple Machine memory addresses. The name should follow normal UNIX file
naming conventions, and may include a path of directories. Conversion between
UNIX style file names and those of the underlying operating system are done by the
Maple Machine. The mode should be the string r or w for reading or writing respec-
tively. Returns an implementation dependent value which can be used as the fp

parameter in other file I/O calls.

fprintf(fp,s,nl,n2,...)
Writes the parameters nl, n2, ... to the file referred to by fp according to the format
specified in the string pointed to by s. Characters in the string are written as they
appear, except that any occurrence of "%s" or "%d" is replaced by a textual
representation of the corresponding parameter. The sequence "%s" indicates that the
parameter is to be interpreted as a pointer to a string in Maple Machine memory,

while "%d" indicates that the parameter is to be interpreted as an integer. None of

49

the modifiers or additional format specifications described in the UNIX
Programmer’s Manual are supported. There can be up to nine parameters after the
s parameter. This last restriction is not exactly UNIX compatible, but is adequate

for porting Maple.

fread (p,size,n, fp)
Reads up to n items (if possible) of size size into the Maple Machine memory
pointed to by p, from the file referred to by fp. The number of items actually read is

returned. If the end of the file has been reached, fread() returns zero.

freopen (s, m, fp)
Closes the file referred to by fp, and then opens the file whose name is pointed to in
Maple Machine memory by s, with the mode pointed to by m. If successful, the

function returns the value of fp, otherwise it returns zero.

fwrite (p,size,n, fp)
Writes up to n items (if possible) of size size from the Maple Machine memory
pointed to by p, to the file referred to by fp. The number of items actually written is
returned. If an error occurs while writing, the number of items written may be less

than the number requested to be written.

getc (fp)
Reads one character from the file referred to by fp and returns it to the caller.

printf(s,nl,n2,...)
Does the same as fprintf(), except writes to the standard output. This is equivalent to
fprintf(1,...);

sprintf(t,s,nl,n2,...)
Does the same as fprintf(), except that the formatted output is written into Maple

Machine memory at the location pointed to by the 7 parameter, instead of to a file.

The standard C run-time library provides several functions to provide abnormal flow of
control. These include functions to branch out of a block, and a function to terminate
execution of the program. The corresponding functions supported by the Maple Machine

are described below:

50

exit (n)
The Maple Machine, and the program running on it, terminates. If the host
environment has the concept of a result code or program return value, n is returned

as that value. Otherwise n is ignored.

setjmp (p)
The current state of the Maple Machine (stack pointer, program counter, etc.) is

saved in the Maple Machine memory locations pointed to by p. At least five words
of memory must be available for use by this function at that location. The function

returns zero.

longjmp (p, r)
Flow of control returns to the state that was saved in the five words of Maple
Machine memory pointed to by p. This function never returns. Instead, the pro-
gram "wakes up” as if it had just returned from the setjmp() call that saved the state,
except that the return value is now r instead of zero. Of course, any global vari-
ables, files, or other persistent objects that were changed since the setjmp() call will

remain changed.

The C language does not have a character string data type. Instead, it provides arrays of
characters, whose contents can be manipulated as strings by appropriate functions. Such
strings are typically terminated by a 0 byte, although one could write string functions that
deal with different formats of strings. The following standard string handling functions

are implemented within the Maple Machine:

strcat (s, t)
The characters of the string in Maple Machine memory pointed to by ¢, up to and
including the terminating byte, are copied to the end of the string pointed to by s,

overwriting its terminating byte. The function returns the value s.

strcmp (s, t)
The strings pointed to by s and ¢ are lexicographically compared. The function
returns -1 if the first string precedes the second, 0 if they are equivalent, or 1 if the
second precedes the first. Comparisons are done using the ASCII character set as
collating sequence. Maple Machines implemented on non-ASCII hosts will make

the appropriate conversions.

51

strcpy (s, t)
The characters of the string pointed to by ¢, up to and including the terminating
byte, are copied to the memory location pointed to by s. The function returns the

value of s.

strlen (s)
The number of characters starting at memory location s, up to but not including the

terminating byte, is returned.

strncpy (s. t,n)
Performs the same function as strcpy(), except that at most n characters are copied.
If the string at ¢ contains less than n characters, including the terminating byte, only
the string and terminating byte are copied. Otherwise, n bytes are copied. Large
programs like Maple often make use of storage dynamically. The amount of storage
needed to perform computations cannot be computed at compile time, or written
into the program. The C standard library provides functions to allocate and deallo-
cate blocks of storage. There are low level functions which simply request additional
blocks from the operating system, and higher level functions to allocate and deallo-
cate chunks of these blocks. Maple uses only one low level function, so that is the

only one implemented by the Maple Machine.

sbrk (n)
Requests n bytes to be added to the memory allocated to the program so far. The
address of the first byte is returned to the program. If there is not sufficient memory
to satisfy the request, the function returns -1. Internally, this function has the effect

of incrementing the break pointer register by n, and returning its old value.

UNIX based systems allow the user a great deal of control over the processes that are
running. A user can interrupt a process, suspend it, place it in the background, or
resume its execution. The standard library provides several functions to support these
capabilities, two of which are used by the Maple kernel, and implemented by the Maple

Machine. These are:

signal (sig, handler)
Sets up the handler function pointed to by handler to be executed whenever the pro-

cess receives the signal specified by sig. The Maple Machine defines only one

52

signal, corresponding to the UNIX signal SIG_INT. The handler parameter specifies
the Maple Machine address of a parameterless C function. If handler is zero, the
signal handler is disabled, and receipt of a SIG_INT signal will stop the Maple
Machine and return control to the underlying operating system. On UNIX, the
SIG_INT signal is generated when the user presses some key, usually BREAK or
CTRL-C. In the Oberon port, the Maple Machine was set up to poll for the
RETURN key to indicate a SIG_INT.

system (s)
The string in Maple Machine memory pointed to by s is passed to the shell of the
underlying operating system, and executed. Clearly, the set of valid strings depends
on the underlying operating system. This function is used by the Maple kernel to
provide a facility for users to execute operating system commands. This command
need not be implemented on Maple Machines running under operating systems that
provide the capability to run multiple concurrent shells, such as Oberon. Informa-
tion about the performance of a system is of interest to many users. This informa-
tion allows users to tailor their programs to make the most efficient use of resources.
The standard library provides several functions to provide this information, and two

of these are implemented by the Maple Machine.

time (p)
Returns the number of seconds since 1970-Jan-01 00:00:00 GMT. If p is non-zero,
the result is also stored in the 32 bit word in Maple Machine memory pointed to by

p.

times (p)
This function does not follow the standard specified in the UNIX Programmer’s
Manual. It determines the amount of CPU time used by the Maple Machine since
its invocation, in 60ths of a second. The result is stored in the 32 bit integer in
Maple Machine memory pointed to by p. The equivalent UNIX function actually
fills in a complex struct with various timing information. Calls to this function in an
existing program will thus have to be modified. This was not considered as disad-
vantage for the Maple port, because the section of code that uses this function

already contained several conditional compilation directives for different target

53

machines; it was merely necessary to add a new section for the Maple Machine tar-
get. On some systems, timing information may not be available in 60ths of a
second. In these cases, the Maple Machine makes use of the information that is

available, and converts the result to 60ths of a second.

The few remaining functions implemented by the Maple Machine do not readily fall into

any broad categories. These functions are:

abs (n)

Returns the absolute value of the 32 bit integer n.

getenv (s)
Calls the corresponding function in the underlying operating system to get the value
of the environment variable whose name is pointed to in Maple Machine memory by
s. The value, a string, is copied into the area of Maple Machine memory pointed to
by the environment pointer register. The contents of this register are returned to the
caller of the function. When the Maple Machine is implemented on a system that
does not have the concept of environment variables, an empty string is copied to the

environment area.

isatty (n)
Returns non-zero if the special file identified by n is associated with interactive input
our output, ie. a terminal. The parameter n can be one of 0, 1, or 2, corresponding
to the standard input, standard output, and standard error output respectively. On
underlying machines which do not support the concept of I/O redirection, this func-

tion always returns non-zero.

Development Tools

5.1. The Compiler

Since the Maple kernel is written in Margay, a macro language front end to C, a C
compiler was needed to compile Maple for the Maple Machine. Although modern com-
piler design methodologies and the nearly LALR(1) grammar of C make writing a C
compiler far easier than compiler writing has ever been, it is still a decidedly non-trivial
task. This was one of the major objections to beginning the Maple Machine project in

the first place.

Fortunately, a compiler for a subset of the C programming language was available to

the author, so that the task did not have to start from scratch.

5.1.1. The Small-C Compiler

The Maple Machine C compiler is based on Ron Cain’s public domain Small-C com-
piler whose source code was first published in the May 1980 issue of Dr. Dobbs Journal of
Computer Calisthenics and Orthodontia. An enhanced version was published by James

Hendrix in the December 1982 issue, as well as in a book devoted entirely to the subject

[8].

5.1.2. Shortcomings of the Compiler

The Small-C compiler only accepted a subset of the C programming language, the
most notable omissions being type casts, arrays of more than one dimension, pointer
indirection of more than one level, the struct facility, the typedef facility, and initializa-
tion of arrays and local variables. Fortunately, Maple does not uses structs or typedefs,

as these would have been the most difficult to add.

Maple does however make extensive use of pointer indirection up to four levels
deep. It also makes use of type casts, and many of its internal data structures are initial-

ized at compile time. All of these features had to be added.

54

55

The version of the Small-C compiler that the author of this thesis had on hand was
accompanied by a code generator for the Intel 8088, the processor used in the IBM PC.
It was decided to retain this code generator so that the compiler could be tested after each

modification by generating 8088 code and running that code on a PC.

5.1.3. Changes to the Compiler

The Small-C compiler was written by hobbyists, and was not very well constructed in
some respects. It was built around a recursive decent parser, but the parser actually dealt
with the source text at the character level in each procedure. There was no distinct lexi-
cal analyser which allowed the parser to deal simply with tokens. As a result, every
parser procedure was littered with code to make string comparisons and skip blanks in the
source being compiled. The first modification that was made was to write a simple lexi-
cal analyser to break the input into tokens, discarding irrelevant characters such as spaces
and comments. The parser could then deal with these tokens, which were represented as
small integers, rather than with free-form character strings. This had the effect of reduc-
ing the size and increasing the speed of the compiler, as well as making it easier to add

the other new features.

Once the lexical analyser was in place, it was much simpler to work with the rest of
the compiler. Most of the other new features to be added were concerned with data
types. At first glance, it appeared as if it would be possible to add these in a rather
straightforward manner, but the existing symbol table structure was inadequate for the
task. The structure had to be modified to provide additional fields that described the
attributes of a type independently of its base type. Attributes indicate whether a type is
an array, a pointer, or a function, while the base type is the type of the elements of the
array, target of the pointer, or value returned by the function. The original implementa-
tion did not allow for arrays of pointers, functions returning pointers, or even pointers to
pointers. Modifying the symbol table was difficult because it was implemented as a single
array of integers. Each entry in the table consisted of a fixed length section of this array.
The fields of each entry were accessed by numeric literal constants added to an index
variable, making the code very hard to follow. This implementation was not changed to
use structs because it was deemed desirable that the compiler could compile itself. The

numeric offsets were given symbolic names however.

56

Additional modifications were made to the symbol table structure to record initializ-
ers for global and local variables. The addition of arrays of pointers meant that the code
to parse initializations was no longer adequate since one might want to initialize an array
of character pointers with a list of strings. Initializers for local variable also required
modifications to the parser itself, since this feature was not supported. Initializers had to
be accumulated for the local variables until all local declarations for a function were pro-

cessed, and then converted into code to actually perform the initializations.

Type casts were rather straightforward to add, since they do not really do anything

except change the compiler’s type information about the expression it is parsing.

5.1.4. Compiler Bugs

In addition to the modifications described above, several bugs were fixed. By exa-
mining the compiler’s source code, it was discovered that the semantics differed from real
C in some subtle ways. The most notable of these was the conditional operator (? and
:). The precedence of this operator was not the same as in real C. The implementation
of array element access was also non-standard. Kernighan and Ritchie [10] define the
expression el[e2] to be equivalent to *(el+e2), where one of el or e2 is an array name or
a pointer. Small-C did not handle this properly when e2 was the array name or pointer.
The Maple source does not contain any subscript expressions written in this "inside-out"
way, but it was decided that if this was not done correctly, there might be other bugs
lurking in the subscript expression parsing code. Therefore, it was rewritten. Another
bug was discovered in the code generation for the dreaded goto statement. The generated
code was correct so long as the goto did not jump out of a block containing local declara-
tions. This was corrected by having each label directive generate code to compute the
correct value of the stack pointer relative to the frame pointer. This was later made

unnecessary by the improved procedure call mechanism described in Chapter 7.

5.1.5. Preliminary Testing

Once the compiler had been enhanced to accept the subset of C used by Maple, it
was tested by compiling large parts of the Maple source code into 8088 assembly

language. These compiled modules would obviously not run, since the compiler was

57

generating code for a 16 bit machine with a 64K address space (by keeping all four seg-
ment registers fixed), but the exercise showed that the compiler was capable of correctly
parsing the Maple source code. The generated code was examined by hand to see if it

would be correct if only the 8088 were a 32 bit machine.

5.2. The Assembler/Linker

Although it would have been possible to write the compiler to generate binary object
modules suitable for linking and execution on the Maple Machine, there were several rea-

sons that an intermediate assembly language code was desired.

Assembly language in human readable form is much easier to examine for correct-
ness than the equivalent code in a binary object file. A disassembler could have been
written to turn binary object files into a human readable form, but much useful informa-
tion, such as symbolic names and lines of C source text would thus be lost. If the com-
piler were to go to the trouble of including these in the object file, it may as well just emit

assembly language.

A separate assembly language also provides an opportunity to test the Maple
Machine interpreter by hand coding assembly language programs for it. Specific instruc-
tions can be tested without having to write a C program that will (hopefully) generate that

instruction.

Finally, it turns out that the assembler is an ideal place in which to perform peephole
optimization on the code generated by the compiler. When a compiler generates two
instructions that are adjacent in the output, the sections of code that generated them
might be widely separated. The assembler on the other hand deals with instructions in a

very sequential manner, well suited to the examination of short instruction sequences.

5.2.1. Overview

The Maple Machine assembler is a simple program that will read one or more
assembly language source files, generate instruction opcodes for each instruction
mnemonic encountered, resolve references between source files, perform peephole optimi-
zation on the generated instruction sequence, and output an executable load module suit-

able for the Maple Machine interpreter.

58

The assembler performs a single pass over the source files, building up a code image
in memory. Forward references are resolved by maintaining internal lists of different
categories of such references, and then backpatching the code image when the referenced
object is encountered. This approach results in relatively high memory requirements, but
this was considered acceptable since the assembler could always be run on some suitable
host. After all, the code image that is generated will be portable to any machine with a
Maple Machine implementation, so the assembler will theoretically never be needed after

the first successful port.

As each instruction is generated, a peephole optimizer looks at the last few instruc-
tions generated, and determines if any sequence can be replaced by a shorter sequence.
If so, the appropriate changes are made and any affected forward reference lists are
updated. The optimizer is completely table driven, meaning that new optimizations can
be inserted by simply adding new entries to the table and recompiling the assembler. The

optimizer is discussed in detail in Chapter 7.

5.2.2. Why Link at the Assembly Level?

In addition to its function as a traditional assembler, the Maple Machine assembler
also performs the operations traditionally performed by a separate linker. There are

several reasons for this.

The compiler generates scope information for each identifier that it generates, so
that the assembler can deal appropriately with different objects of the same name. Since
the assembler is already using some of this information, it seems reasonable that it can
make use of all of it and perform the linking function while it is at it. The time taken to
resolve references, especially with the single pass technique used, is surely less than the

time it would take to write the information to a file, only to have the linker read it back.

Traditionally, the main reason to have a separate linker was speed. A linker allows
one to recompile only those parts of a program that have been changed, and then just link
in the object files for the other parts. When used in conjunction with a compiler that gen-
erates linkable object modules, this makes sense; recompiling all the source code for a
large program is much more complicated than linking in precompiled modules. When

using a linker to link modules produced by an assembler however, the time taken to link

59

can often be just as long as the time it would take to reassemble all the source code. This
is as a result of the relative simplicity of an assembler relative to a compiler. In effect,
the Maple Machine assembler is a linker that takes human readable modules as input,

and produces one machine readable module as output.

Informal measurements of the time required to compile the entire Maple kernel and
link it into an executable load module indicate that this approach is efficient. The time
required to compile Maple with the 4.3 BSD UNIX C compiler, and link it, is approxi-
mately the same as the time required to compile Maple with the Maple Machine C com-

piler, and assemble/link it.

5.2.3. Instruction Format

The Maple Machine assembler accepts free-form input. Since the Maple Machine is
stack based, instructions do not have operands. The traditional assembler requirement of
one instruction per line is therefore non-existent. There is no ambiguity about where one

instruction ends and the next one begins.

Identifiers can be any sequence of non-whitespace characters that is not an instruc-

tion or assembler directive. For example, the following are all valid identifiers:
FO0? B_R 12B %/

Note that /23 is not a valid identifier, since it denotes the instruction to load the constant
123 onto the stack.

Comments, which are ignored by the assembler, are delimited by the sequence "$-$"

on both ends of the comment. A single comment may extend over multiple lines.

The examples of assembly language output from the C compiler in this thesis have
been edited by hand to show program structure using indentation. The compiler does not

generate neatly indented code like this, but the assembler will assemble such code.

60

5.2.4. Assembler Directives

In addition to the instructions described in Chapter 4, of which there were 60, there
are several assembler directives, or pseudo-instructions which may generate one or more

actual instructions, or cause storage to be allocated.

The syntax of the assembler directives will be described using a variation of Backus-

Naur notation as follows:

1. Any sequence of non-blank characters beginning with a capital letter must be typed

as it appears.

2. Any sequence of characters enclosed in backquotes must be typed as it appears, but

without the backquotes.

3. Lowercase symbols indicate placeholders that are replaced by appropriate values in

specific instances of the construct.

4. An item or sequence of items enclosed in braces, followed by an asterisk, may

appear one or more times, or not at all.

Storage allocation directives are used to set aside and possibly initialize one or more bytes
or words of the Maple Machine’s memory to hold simple variables or arrays. To declare
a simple integer (word) or character (byte) variable with no explicit initialization, the INT

or CHAR directive is used. The syntax is:

INT identifier
CHAR identifier

An array of integer or character variables is declared using the INT[] or CHAR[] direc-

tives as follows:

INT[] identifier size

CHAR[] identifier size

The value specified by size is the number of bytes that the variable is to occupy. Thus,

an integer array with 5 elements would be declared by specifying a size of 20 bytes.

61

Variables can also be declared with explicit initial values. These values are written
into the code image file, so no code is generated to actually perform the initializations.

The syntax for declaring initialized variables is:

INTDEF identifier initializer
CHARDEF identifier initializer
INTDEE [] identifier size { initializer }*

CHARDEE[] identifier size { initializer }*

The definition of an initializer is given below. Notice that a size is specified for initial-
ized arrays. This size is is used to determine how much space to allocate for the array.
If the number of initializers given is not enough to fill that space, the remainder is filled
with 0 bytes. If too many initializers are given, any beyond the allocated space are dis-

carded.

An initializer can either be a signed decimal integer, or a text string with the follow-

ing syntax:
TEXT: ~"* characters ~™

Text string initializers do not represent the characters in them, but rather the address of
the text string in memory. Thus, text string initializers only make sense for INTDEF and
INTDEF([] declarations, where the address of the string will become the initial value of

the variable.

Sometimes, it is desirable to declare global variables with a limited scope. Variables
declared using INT, CHAR, or one of the other storage allocation directives will normally

be visible throughout source file being assembled. A STATIC declaration, of the form,
STATIC identifier

will terminate the scope of a variable. The variable will not be visible past the point of
the STATIC declaration. In fact, a new variable with the same identifier can be declared

without danger of conflict with the earlier variable.

The special identifier TEXT?, when declared by a CHARDEF[] directive, is automat-
ically made static at that point. All earlier unresolved references to it are filled in.

Further references to TEXT? will refer to the next declaration of TEXT?. This identifier is

62

declared by the C compiler to refer to all the string constants in one compilation unit.
The assembly language output of each compilation unit contains its own declaration of

TEXT?, such as in the following example:

CHARDEF [] TEXT? "All the strings in the preceding module...

The strings are actually output by the compiler as a sequence of numeric constants, so
that control characters in the string to not interfere with the assembler’s parsing pro-

cedure.

Instructions in a Maple Machine program are grouped into procedures, which
correspond to C functions. Each procedure is given a name, and can be called by men-

tioning the name in an assembly language program. A procedure is declared as follows:

~ ~

identifier

All instructions following this declaration up to the assembler directive,

~ .~
.

then become part of the procedure. Parameters to procedures are not declared at the
assembly language level; they are simply accessed relative to the argument pointer using

instructions such as "#+".

Within a procedure, the GOTO instruction can be used to branch to an address. The
LABEL directive is used to give symbolic names to such addresses, and has the following

syntax:
LABEL identifier

A given label can only be declared once in a source file. Since multiple C compiler out-
put files are concatenated and fed to the assembler as a single source file, the compiler
ensures that any labels generated are unique by prepending each occurrence of a label

with the current function name and an underscore character,

The primary difference between functions and labels is that the assembler keeps

track of them separately, and recognizes a function invocation when it sees one.

63

There are several assembler directives to aid the C compiler in generating code for
the for control structure. For example, consider the following piece of C code, where i

and j are declared globally as integers:

for (i = 0; 1 < 10; ++i)

j *=2;
This C code would result in the following assembly language output:

o)
DUP

POP
FOR

iz

10 >
WHILEFOR

i ? ++

DuP

il!

POP
BEGINEFOR

j?

ENDEOR

WHILEFOR is a Maple Machine instruction, but FOR, BEGINF OR, and ENDFOR are all
assembler directives. The FOR directive creates a descriptor that is used by the assembler
to keep track of the various parts of the FOR control structure. These descriptors are

stored on a stack, so that control structures can be arbitrarily nested.

64

The descriptor is initially filled in with only the address at which the FOR directive
occurred. When the assembler encounters the WHILEFOR instruction, its location is
noted in the structure descriptor, so that WHILEFOR’s two parameters can be filled in

later.

When the BEGINFOR directive is encountered, the assembler emits a GOTO instruc-
tion with the address of the FOR directive as its parameter. It also fills in one of the
address fields of the WHILEFOR instruction with the address of the instruction following
the BEGINFOR directive. On encountering the ENDFOR, another GOTO is emitted with
the address of the first instruction after the WHILEFOR as its parameter. The other
address field of the WHILEFOR instruction is then filled in with the address of the first
instruction after the ENDFOR. The links in the resulting code image are illustrated in

Figure 5.

initialize
code

test e
code

WHILEFOR

increment 6—'—-—
code

GOTO

body é——l

of
loop

GOTO

Figure 5. Structure of a FOR statement.

The reason for the existence of the GOTO generating directives is to simplify the

65

compiler, and to allow it to be debugged more easily. The directives result in assembly
language code whose structure is easily discerned, and is thus easily examined for compi-

lation errors.
In addition to the for style of loop, C also supports two simpler loop styles: the while

loop, and the do loop. Consider the following two pieces of C code:

while (i < 10) do

while(i < 10):

The compiler will produce the following assembly language outputs for these two code

samples:

LOOP LOOP
i? i7z
10 > ++

WHILE DUP
iz i!
++ POP
DUP iz
it 10 >
POP WHILE

ENDLOOP ENDLOOP

When the assembler encounters the LOOP directive, it allocates a control structure
descriptor and fills in the address of the instruction following the directive. When the
WHILE directive is encountered, an IF instruction is emitted, and its location is stored in
the descriptor. Finally, on encountering the ENDLOOP directive, a GOTO instruction is
emitted, followed by the address of the first instruction after the LOOP directive. The
address field of the IF instruction is then filled in to point at the first instruction after this
GOTO instruction. Thus, the same assembler control structures are used for both the

while and do control structures in C.

66

C supports two different selection control structures. An if statement is used to con-
ditionally execute a section of code depending on the result of some expression. A switch
statement is used to select one of several sections of code to execute. Consider the two if

statements below, one with an else part and one without:

if(i < 10) if(i < 10)
++1; ++1;

else
--i:

The compiler would generate the following code for these two statements:

iz iz
10 > 10 >
IF IF
i 2 iz
++ ++
DUP DUP
i} i
POP POP
ENDIF ELSE
i ?
DUP
i
POP
ENDIF

When the IF instruction is encountered, it is emitted, and a control structure descriptor is

allocated and filled in with the location of the IF instruction.

When an ELSE directive is encountered, a GOTO instruction is emitted and its loca-
tion is stored in the structure descriptor. The address parameter of the previous IF
instruction is then filled in with the address of the next instruction following this GOTO

instruction.

67

On encountering an ENDIF directive, the assembler looks at the structure descriptor
to see if there was an ELSE part corresponding to the last IF. If there was an ELSE part,
the parameter of the GOTO instruction emitted for the ELSE directive is filled in with the
address of the next instruction after the ENDIF directive. If there was no ELSE part,

then the parameter of the IF is filled in with this address instead. The resulting links are

illustrated in Figure 6.

test
code
- IF
test
code
IP body
of
IF part
body GOTO
of
IF part
: body é—j
: of
) ELSE part
(a) Simple IF
-

(b) IP..ELSE

Figure 6. Structure of IF statements.

The C switch statement compiles into a SWITCH instruction, one or more CASE instruc-
tions, possibly a DEFAULT instruction, and an ENDSWITCH directive. When the assem-
bler encounters the ENDSWITCH directive, it fills in any remaining unresolved references

in the SWITCH, CASE, and DEFAULT instructions as was described in Chapter 4.

C provides two statements that allow abnormal control flow. The break statement
allows the program to terminate the current loop or switch statement, even if the termina-
tion conditions (in the case of a for or while statement) have not been met. The continue
statement transfers control directly to the test part of a while loop, or the increment part

of a for loop. Two assembler directives provide this functionality.

68

The BREAK directive results in the emission of a GOTO instruction. The address
field of the GOTO instruction is temporarily filled in with the address of the last BREAK
directive, or zero if there were no earlier BREAK directives in the current control struc-
ture. The address of the current BREAK directive is then stored in the control structure
descriptor maintained by the assembler. When the end of a control structure is encoun-
tered, signalled by an ENDLOOP, ENDFOR, or ENDSWITCH directive, the address of
the next instruction following the control structure is filled into the address field of each
of the GOTO instructions, which are found by traversing the links currently stored in
these fields.

The CONTINUE directive is handled the same way, except that the address of the
test or increment part of the current loop, as opposed to the address of the first instruction

following the loop, is filled into the address fields of the GOTO instructions instead.

5.2.5. Files Produced

The assembler produces from one to three different output files, depending on the

options specified when it is invoked.

The primary output file is of course the assembled code image. This file is simply a
sequence of bytes, ready to be loaded into the Maple Machine’s memory beginning at
address zero. The last four bytes of the file are interpreted as a word that gives the
address of the first instruction to be executed. This word is the address of a procedure

called main if there is one, or zero otherwise.

If the mapping option is enabled, the assembler also produces a map file. The map
file lists each identifier defined in the program, and the type and address of that identif-
ier. An identifier can be of one of four types: CHAR, INT, LABEL, or FUNCTION. An
INT or CHAR identifier can refer to either a single word or byte variable, or an array of
such. A label is simply a point in memory used as the target of a conditional or uncondi-
tional branch; it does not actually occupy any memory. A FUNCTION identifier is one

that was defined using the ":" directive.

69

If the correlation option is enabled, the assembler produces a correlation file. This
file indicates the correspondence between assembly language source code lines and
instruction addresses. This is used when debugging to find the source line that resulted in

the instruction at a given address.

The First Implementation

In this chapter, we describe the process of creating the first working Maple Machine
implementation. Like most large projects, many problems and obstacles made the pro-

cess much more interesting.

6.1. Overview of the Interpreter

The first Maple Machine interpreter was written in the C programming language to
run on a VAX 11/785 minicomputer under 4.3 BSD UNIX. The only goal was to make

it work; efficiency would be considered later.

The interpreter is a C program that reads a Maple Machine code image into
memory, initializes various registers and pointers, and proceeds to interpret the code
image. The interpreter is invoked from the UNIX shell prompt, with the file name of the
code image file as the first parameter. This is followed by any parameters that are to be

passed to the interpreted program.

6.2. Implementation Strategy

Since the primary goal of the first implementation attempt was simply to get some-
thing running, efficiency was not considered in the coding of the interpreter. Clarity and
maintainability of the code were much more important. Thus, the interpreter was written

in as clear and readable a way as the author (a code hacker at heart) was capable of.

The Maple Machine’s main memory was simply declared as a large array (approxi-
mately 1 million elements) of characters. Maple Machine addresses were thus integers

beginning from zero.

When the interpreter is started, the code image is read into memory and the variable
used for the program counter is set to the address specified at the end of the code image

file as the entry point.

70

71

Two words are filled in above the space occupied by the code, giving the number of
command line parameters (not counting the name of the interpreter itself), and the
address of where these parameters are stored. These are normally referenced by the
parameters argc and argv in the main() function of a C program. Space is then allocated
above this for the evaluation stack. Pointers to each command line parameter are then
written into the memory immediately beyond the stack, followed by the actual text of the

parameters.

With all the relevant information loaded into memory, the various internal pointers,
such as the stack pointer, are set to their initial values as described in Chapter 4. Control

is then passed to the function responsible for program execution.

The actual interpretation is performed by a simple loop. At the top of the loop, the
instruction whose address is in the program counter is fetched from the memory array,
and the program counter is incremented. The instruction is then used as the selector in a
switch statement, thus transferring control to the appropriate section of code for execution
of that instruction. This is actually a rather efficient method, since the 4.3 BSD UNIX C
compiler generates a VAX case instruction to index into a jump table and transfer control

directly to the appropriate code.

Instructions which must access the evaluation stack directly do so with an expression

such as,
evalstack[evalsp]

where evalstack is a pointer to the real machine address of the part of the memory array
in which the evaluation stack resides, and evalsp is an integer representing the number of
words currently on the stack. Note that evalstack is a pointer to a 32 bit integer, even
though it points into the middle of an array of 8 bit characters. This allows words to be
fetched from the stack using one VAX word load instruction, instead of four byte load
instructions and a lot of arithmetic. Word fetches from other memory locations, such as

might be generated by the Maple Machine instructions,
12345 2

are handled in a similar way. The Maple Machine address (an integer), is added to the

real machine address of the memory array, resulting in a pointer to a character. This is

72

then type cast into a pointer to an integer, and then dereferenced. For example, the C

code that executes the Maple Machine’s "?" (fetch) instruction is simply:

evalstack[evalsp-1] =

*(long *) (memory + evalstack[evalsp-1])

By writing the interpreter in such a straightforward manner, errors due to bizarre "tricks"
were minimized. This would of course greatly reduce the time required to create a func-
tioning implementation. Surprisingly, without using any tricky coding, the 4.3 BSD
UNIX C compiler managed to generate very good code. This is probably due in part to
the close parallel between the architecture of the VAX and the features provided by the C

programming language.

6.3. Initial Debugging

Once the interpreter was written, it was desired to perform some preliminary tests in
order to root out any coding errors that may have crept in during implementation. Test-
ing it by actually attempting the Maple port would have been foolish. Therefore, several
small test programs were written to test various features of the Maple Machine system.
These programs were small enough so that any resulting errors would be immediately

indicative of where the problem was.

6.3.1. Some Small Test Programs and Results

The first test program written for the Maple Machine was the one that every pro-
grammer writes as his first program on a new system or in a new language. This of
course is the one that simply prints "Hello world!" and then terminates. The C source

code for this program is:

73

#include <stdio.h>

main (argc, argv)
int argc;
char **argv;
{
printf ("Hello world!0);

b

There was of course no need to first write the printf() library function since this is built

into the Maple Machine. The resulting Maple Machine assembly language program is:

main
O TEXT? +
1 printf
VAL?
POP
RETURN ;

CHARDEFE [] TEXT? 14
72 101 108 108 111 32 119 111 114 108 100 33 10 O

This was assembled by the assembler into a 31 byte executable file, of which the last four

bytes indicated the entry point at location zero.

The simple test program immediately uncovered several errors in the Maple Machine
system. Assembler errors resulted in misplaced references, and interpreter errors
included improper use of the stack and frame pointers. An octal dump of the executable
file quickly uncovered the assembler produced errors, while an examination of the
interpreter’s code in relation to the test program pointed out the problems in the inter-

preter.

More complex test programs, making use of loops, separate functions, arrays, and
other features of C were written, and more errors were discovered. Eventually, errors

stopped appearing (although the author did not take this as an indication that there were

74

no more) and the processes of porting the Maple kernel was begun.

6.4. Getting Maple Running

The first step in actually porting the Maple kernel to the Maple Machine was to
compile the source code, and assemble/link the resulting modules. After making changes
to all the macro definitions so that they would be appropriate to the Maple Machine, the

compilation could begin.

Each source file was passed through the Margay preprocessor, and the resulting
"pure” C language output was given to the Maple Machine C compiler. Unfortunately,
this process was not without problems. A few of the C source files contained constructs
slightly beyond the capabilities of the compiler. The compiler was modified several times
to extend its capabilities, and all the files compiled up to that point were recompiled.
This task was greatly simplified by the UNIX make facility, which allows the programmer
to specify the various files involved in a compilation, and the dependencies between
them. In this particular case, the assembly language output files were made dependent
not only on the input files, but also on the last revision date of the compiler. If the com-
piler was more recent than an output file, the corresponding input file was recompiled.
Needless to say, this facility prevented a lot of potential errors that would result from

modules generated by different revisions of the compiler.

Once all the parts of the Maple kernel had been compiled, the resulting assembly
language files were concatenated and passed to the assembler. This of course unearthed
several bugs in the assembler, as well as some basic design errors in the system as a
whole. The largest such error was the realization that a large program was bound to have
more than one goto target label with the same name, and that the assembler’s treatment
of labels as having global scope was not suitable. Unfortunately, the design of the assem-
bler would have made it difficult to change this. Instead, the compiler was modified to
prepend the current function name to each label reference, assuring that such labels
would be unique in the assembly language output. This of course necessitated recompila-

tion of all the source files.

75

The entire process of producing an executable went through several phases of compi-
lation and assembly, until a code image file resulted without any reported errors. The
problem with a multiple phase system such as the compiler-assembler-interpreter confi-
guration discussed here is that an error occurring at any stage may be the result of a prob-
lem at that stage or any of the earlier stages. Thus, the further one gets in completing a
whole cycle, the longer it takes to correct an error. Errors early in the cycle can be
repaired quickly, but later errors can take a long time to find, and result in having to

repeat the whole cycle up to that point.

After finally producing a code image without apparent error, there was still the pos-
sibility of a bug in the interpreter itself, as well as the compiler and assembler. The only

output that resulted from the first test run was the message:
Segmentation fault

At this point, finding the cause of an error was a formidable task. Any particular error
could be the result of a compiler bug, a problem with the assembler, a mistake in the
interpreter, an undiscovered bug in the Maple kernel itself, or a really basic design flaw.
To make error tracking easier, various debugging aids were slowly added to the inter-

preter.

6.4.1. Debugging Facilities

When debugging a program on a conventional computer such as a VAX or IBM
Personal Computer, running a conventional operating system such as UNIX or PC-DOS,

several tools are available.

A debugger is a program that is used to run the program being debugged in a con-
trolled manner. The debugger tries not to give control of the computer to the program
under test, since that program may not be working properly. Debuggers provide facilities
to execute the program one machine instruction at a time, or possibly one source
language statement at a time. In essence (although not usually in fact), debuggers inter-
pret the machine language code image. They usually also provide facilities to produce a
trace, or listing giving the values of variables and describing the flow of control through
the program. Unfortunately, no debugger is perfect, and it is nearly always possible for

the program being debugged (or the debugger itself) to crash anyway. On machines such

76

as a VAX, which provide memory protection, the debugger can usually recover from this
situation and provide the programmer with some useful information. On smaller
machines such as the IBM PC however, there is usually little or nothing the debugger can
do.

The first attempts at debugging the Maple Machine running the Maple kernel con-
centrated on using the UNIX dbx program. This allowed the author to monitor the exe-
cution of the interpreter. The first result of this was that the point in the interpreter in
which the segmentation fault occurred was immediately pinpointed. The fault occurred
when the interpreter was attempting to execute a "?" (fetch) instruction, and the value on
the top of the stack was larger than the size of the Maple Machine’s address space.
Unfortunately, this information was not very useful because the interpreter had executed
thousands of fetch instructions before the offending one, with no ill effect. The problem
was obviously not with the fetch instruction, but with the means by which the incorrect
value got onto the top of the stack. The dbx program also printed out the contents of the
global variable pc, which the interpreter uses as a program counter, so it was possible to
tell which fetch instruction in the code image was causing the problem. Again, this was
not sufficient to indicate why the problem was occurring. It would be nice if it were pos-
sible to run the program backwards, closing in on the point where the error began, but

the debuggers currently available do not allow this.

It became clear that debugging the Maple Machine by running dbx on the interpreter
would never succeed, as the information provided by dbx was too far removed from the
problem. After all, the Maple Machine interpreter was crashing because the program
running on it was crashing; a debugger that ran on the Maple Machine itself would be

more appropriate.

Writing a debugger to run on the Maple Machine was not a feasible proposition,
since the Maple Machine provides no way for such a debugger to control another pro-
gram. However, since the Maple Machine is just a program itself, it would be easy to
write a debugger that was actually part of the Machine. This would effectively provide

the facilities offered by an in-circuit emulator to hardware designers.

77

One time when a debugger is not of much use is when the hardware itself is
suspected of containing bugs. After all, if the hardware cannot be trusted to run the pro-
gram under test, it will, in all likelihood, not fair too well running the debugger either.
Such situations usually result when a new computer system is being designed and imple-
mented, and not when developing application level programs. In these cases, computer
design engineers use a tool called an in-circuit emulator. This is basically a special
stand-alone computer that is designed to replace the central processor of the system being
tested. This computer emulates the central processor, usually at full speed, but allows the

engineer to watch what is happening "from the inside".

The debugging feature that was added was a multiple level trace facility. The user
could run the program, and indicate a range of Maple Machine addresses that should be

traced, and the level of detail of information required.

When the lowest level of detail was selected, each instruction executed within the
specified range would result in a display of the instruction’s address, its mnemonic, and as
much of the contents of the stack (starting from the top) as would fit on the remainder of
an 80 column line. By tracing the instructions in memory immediately preceding the one
that caused the segmentation fault, it was possible to see how the offending address value
was computed in the first place. This in turn pointed out an error in the implementation

of a Maple Machine instruction.

The next level of detail that could be selected was a trace of all procedure calls and

returns. Whenever the flow of control was transferred to a procedure, a line of the form,

---> procname

would be displayed. When a RETURN or RETVAL instruction was executed, a line of

the form,
procname <---

was displayed. In the first case, procname is the name of the procedure that was called,
while in the second case, it indicates the name of the procedure to which control was
returned. Since these procedures correspond directly to C functions in the Maple Kernel,
it was easy to follow the flow of control. This facility could be enabled independently of

the tracing range, so that the procedure call information would be displayed for all calls

78

and returns, while the detailed instruction execution information would be displayed only

for a selected range of instructions.

A final level of detail provided by the debugging facilities was a complete stack pic-
ture of all active procedures. In other words, whenever a procedure was called, the con-
tents of the entire return stack were displayed in a useful form. This showed the
addresses of the argument and local variable storage for each active procedure, and the

number of procedures active at any given time.

An additional debugging facility was added to allow tracing of data accesses as
opposed to instruction fetches. The user could specify a range of addresses that should be
monitored for attempts to read from and write to them. This feature was implemented
when it was discovered that some of the bugs resulted from data being written over the

code image.

Several smaller run-time checks were built into the interpreter to trap certain errors
and announce them, rather than letting the interpreter itself crash. Any attempts to
address Maple Machine memory were checked for validity before being carried out.

Overflow of the evaluation and return stacks was also monitored.

The various low level debugging facilities described in this section allowed the author
to get Maple running on the Maple Machine within two days of the first successful compi-
lation. There were of course still further bugs that surfaced when Maple was asked to
perform more complicated operations, but most of the basic facilities worked. Perfor-
mance was very poor, since at this point, no attempts had been made at optimization.
The interpreter was also performing extensive checks with each instruction it was inter-
preting, resulting in a lot of overhead. When the debugging facilities were eventually

removed, execution speed tripled.

6.4.2. Using The Assembler’s Map and Correlation Files

In Chapter 5, it was mentioned that the assembler can produce two output files in
addition to the code image file. These are the map file, and the correlation file. The
first lists the name, type, and location of every identifier in assembly language input file,
while the second indicates the correlation between assembly language source code lines,

and Maple Machine instruction addresses in the code image file.

79

The map file is used by the debugging facilities to provide the procedure call infor-
mation. Whenever a call occurs, the target address is looked up in the map file, and the
corresponding name is displayed. When a RETURN or RETVAL instruction is exe-
cuted, the return address is compared to each address in the map file until one is found
that is larger than it. The previous identifier is then displayed as the name of the pro-

cedure to which control was returned.

The correlation file is not used by any of the debugging tools. It can be used by the
user who, armed with the address of an offending instruction, wishes to find the
corresponding line of the assembly language source code. Since the compiler inserts the
C language source into the assembly language file as comments, the debugging informa-
tion can quickly lead to the offending C source statement. Ideally, this information
should be provided automatically by the debugger, but the effort required to implement

such a facility was not deemed worthwhile.

System Optimization

Optimization of a software system is the processes of improving that system so that it
takes less time and/or memory to run. The word "optimization" is a bit of a misnomer, as
it implies that the system is improved to the point where no further improvements are

possible. The word "improvement" would perhaps have been a better choice.

In a conventional system, optimization is usually performed by a language compiler
on the code that it is generating. The term "optimizing" is often used by a compiler
manufacturers to describe what that manufacturer’s compiler does that no others do, so

there exists a great range of optimizing compilers.

Compilers that really do perform some optimization other than just generating rea-
sonable code in the first place, use techniques that fall into two general categories: global

optimization and peephole optimization.

Globally optimizing compilers attempt to examine the structure of the program (or
possibly an internal representation thereof) they are compiling, and detect such things as
common sub-expressions which need only be computed once, or loop invariant code
which can be moved outside of the loop since it is not affected by it. They also try to
track the active life of variables, so that intelligent use can be made of the target

machine’s registers.

Peephole optimization is a process that is usually performed on either the compiler’s
intermediate representation of a program, the assembly language or binary output, or
both. Peephole optimizers attempt to replace commonly occurring sequences of code with
shorter or faster sequences that perform the same operations. The term "peephole” is
used because the optimization is performed by examining small fragments of the code,

with no regard to the overall structure of the program.

Many compilers perform both types of optimization. Global optimization is useful
for overcoming deficiencies in the source language, such as the requirement to write

something like,

80

81

A[I+J] = A[I+J] * 2
in FORTRAN, instead of the more efficient and expressive C construct,
a[i+j] *= 2

in which the subscript expression is evaluated only once. Global optimization can also
reduce the effects of inefficient coding such as in the sample below, where the computa-

tion of (row * column) really only needs to be carried out once:

i=1;
while (i < 1000)
i

=1 + (row * column);

A good globally optimizing compiler can allow the programmer to concentrate on writing
readable code, instead of on using obscure tricks for efficiency’s sake. A peephole optim-
izer can further improve the code by making more efficient use of the target machine’s
instruction set without unduly complicating the compiler with details of special instruction
formats. It also requires some intelligence on the part of a compiler to prevent the gen-
eration of such sequences as a push instruction followed immediately by a pop instruction;
it is easier to simply generate such sequences, and have the peephole optimizer remove

them.

In the Maple Machine system, there are even more opportunities for optimization.
In addition to optimizing the compiler, one can optimize the implementation of the inter-
preter and the design of the instruction set. In addition, optimizations can be geared
towards the specific program being compiled, namely the Maple kernel, since its execu-

tion is the sole reason for the existence of the Maple Machine.

7.1. Improving the Compiler

Most of the improvements to the Maple Machine C compiler were done before the
first Maple Machine was ever implemented. The compiler generated some very ineffi-
cient code in some cases. Many of these inefficiencies vanished when the compiler was
retargeted, since the stack machine architecture more closely matches the structure of the

compiler itself. For example, the 8086 version of the compiler, when given the following

82

C source code,

i=74+8;

i=43+7;
generated the following 8086 assembly language instructions:

mov ax,7
mov bx,8
add ax,bx

mov _i1,ax

mov ax,_j
mov bx,7
add ax,bx

mov _i,ax
A more sensible compiler would have generated a more efficient sequence, such as this:

mov ax,1l5

mov _i,ax

mov ax,._J
add ax,7

mov i_,ax

—t

The same C code when fed to a poor Maple Machine compiler would result in the follow-

ing output:

Clearly, the second case cannot be optimized any further. The first case however would

be more efficient if generated as:

83

15 i !

So, the first change made to the compiler was to implement compile-time evaluation of
constant expressions. This was actually done before the first Maple Machine version of
the compiler was produced, since many of the initializers in the Maple kernel source code
made use of constant expressions (which are evaluated at compile time), and not just

literal constants.

7.1.1. Maple Specific Functions

The Maple kernel performs several operations quite frequently. These operations
are relatively simple, resulting in two to four instructions on a conventional machine, and
so would suffer greatly from function call overhead if they were implemented as C func-
tions. However, a function-like syntax was desired for these operations since the expres-
sions performing them were rather obscure and meaningless when written out. Thus,
they were implemented as macros, which are expanded by the Margay preprocessor dur-

ing compilation.

Since these operations occur so frequently, at a cost of two to four instruction execu-
tions each, a savings in code size and execution time could be realized if each such opera-
tion could be replaced by a single instruction. This was done, and the resulting
?LENGTH, ?ID, and ?CASE_ID instructions were discussed in detail in Chapter 4.

The definitions of these macros were removed from the macro definition files. The
preprocessed code would thus be passed to the compiler with the macro invocations in
their source form, appearing just like normal function calls. The compiler was modified
to recognize the macro names as built-in operators, generate code to evaluate the argu-
ment, and then generate the single instruction that would perform that operation. These

instructions were then added to the assembler and interpreter.

7.1.2. Improved Function Calling

Another area where the Maple Machine system was initially weak was the procedure

(function) call mechanism. Every function call required the following steps:

84

1. Evaluate each argument, leaving the result on the stack.
2. Put the argument count on the stack.

3. Perform the function call, saving the program counter, stack pointer, and frame

pointer.
4. Allocate the local variables using a STACK instruction.

5. Fetch the argument count (which was placed there by the calling code) from the

stack into a local variable.
6. Execute the body of the procedure.
7. Deallocate the local variables using a STACK instruction.

8. Restore the program counter, stack pointer, and frame pointer, returning from the

procedure.
9. Deallocate the arguments using another STACK instruction.

Besides requiring three STACK instructions to be executed for each procedure being
called, there were several other side effects. C functions that took a variable number of
arguments had to explicitly request the argument count from a pseudo-variable called
"$#". This meant of course that the Maple kernel source would have to be extensively
modified for those functions. All of these kernel functions used the contents of the first
formal argument to determine the number of actual arguments that were passed, but the
argument count was needed to determine the address of the first actual argument. This
was because the Maple Machine C compiler evaluated function arguments from left to
right, instead of the more traditional (but not guaranteed) right to left. As a result, the
first argument was furthest from the top of stack, and its exact location depended on the
number of arguments. Thus, the "$#" variable and the associated modifications to the

code were required.

The author had considered modifying the compiler to evaluate function arguments
from right to left, but decided that this would have been too difficult within the existing
framework of the compiler. Instead, a new procedure calling mechanism was devised
which would make the existing left to right evaluation compatible with any existing code,

and also greatly speed up the function calling process. This modification consisted of

85

adding a separate argument pointer register and changing the structure of procedure

activation records.

The argument pointer register is analogous to the frame pointer register, except that
it points to the first argument of the called function, whereas the frame pointer points to
the first local variable. The compiler was modified so that argument references would be
generated as positive offsets from the argument pointer, instead of the negative offsets
from the frame pointer that were used before. New instructions were added to the Maple
Machine to deal with this. These instructions (such as "#+") are described in Chapter 4.

A fetch of the first local variable was thus always generated as,

O #+ ?
(actually as ARG_O_FETCH when the shortcut instructions were later added), instead of,
-n $§+ 2

where the value of n depends on the number of actual parameters. This completely elim-
inated the need for the "$#" variable, since the first actual parameter could always be

accessed via the first formal parameter in the function definition.

The other change that was made was in the values stored in the procedure activation
record. It was no longer necessary to store the current value of the evaluation stack
pointer. On return from a procedure, the evaluation stack pointer is set to the value
currently in the argument pointer register, effectively unstacking all the actual parameters
and local variables of the procedure. This eliminated the need for two of the three
STACK instructions previously required. The parts of the compiler that kept track of how
many words to STACK and unSTACK could thus be removed.

7.1.3. Other Optimizations

The changes to the compiler described above (except for compile-time evaluation of
constant expressions) were primarily to correspondence to with architectural changes in
the Maple Machine. The evaluation of constant expressions at compile time is a facility

that any decent compiler should provide.

86

The Maple Machine C compiler does not perform any global optimizations. The
reasons for this are twofold. First, Maple was originally written when compiler technology
was not as advanced as it is today. The source code has basically been optimized by
hand, often at the expense of readability. A fairly extensive optimizing compiler would
be required to make much of an improvement. Secondly, the compactness of the Maple
Machine instruction set makes it very easy for the compiler to generate small code images
without having to resort to such complex measures. Even without the peephole optimizer
described in the next section, the code image for the Maple kernel is only 30% larger
than the code image generated by the 4.3 BSD UNIX C compiler.

7.2. An Assembler Peephole Optimizer

It is the author’s contention that the Maple kernel would benefit little from a globally
optimizing compiler. A peephole optimizer on the other hand is an absolute necessity, as
the Maple Machine C compiler will often generate rather inefficient code for even the
best written (from the compiler’s point of view) C programs. This is due primarily to the
fact that adjacent instructions in the output are often generated by widely separated parts
of the compiler, which do not take context into account. As mentioned earlier, such
inefficiencies are more easily dealt with by a peephole optimizer than by modifying the

compiler.

7.2.1. Why Optimize in the Assembler?

Traditionally, a peephole optimizer is a part of a compiler. The compiler’s inter-
mediate code or object code output is examined by the optimizer while it is being emit-
ted, and changes are made "on the fly”. This is a suitable approach when the compiler is
generating either machine instructions or some code with a fixed format. Performing
such optimization on assembly language however would require a great deal of textual
processing, which would degrade the performance of the compiler and make it unneces-
sarily complicated. For this reason, it was decided to make the peephole optimizer a part

of the assembler instead.

87

When the assembler is generating a code image from an assembly language source
file, it is simply depositing a sequence of bytes representing instructions into a large array.
It is a fairly simple matter then to examine the last few bytes currently in the array for
common sequences that can be replaced. The assembler merely calls the optimization
routine after each instruction is emitted. The routine makes any suitable changes, updat-

ing the instruction pointer if the number of instructions was changed, and returns.

7.2.2. The Code Burst Table

Peephole optimization consists of examining an instruction sequence for specific
“code bursts", short sequences of instructions performing some function, and replacing
some of these with shorter bursts. The only difference between any two such optimiza-
tions is in the instructions involved. Thus, the process lends itself nicely to a table driven
approach, in which a table simply stores each code burst that can be replaced, and the

corresponding code burst to replace it with.

The Maple Machine assembler contains a table structure with two elements each.
Each element is an array of bytes large enough to hold the longest code burst to be exam-
ined. The first array describes the code burst to be replaced, and the second describes the
replacement. The code burst in each array is followed by a zero byte, to indicate where
it ends. The last table entry is followed by a structure containing empty code bursts.
Adding new peephole optimizations (or "peepholes”, as they are commonly called) simply

consists of adding a new row to the table and recompiling the assembler.

As each instruction is emitted, the last few instructions in the code image are com-
pared with each code burst in the table. If a match is found, a replacement is made and
the process repeated in case further optimization possibilities result. The table is currently
searched by a linear search, but it is small enough to not warrant a more efficient search

algorithm.

88

7.2.3. The Fast SWITCH Construct

In Chapter 4, we described the SWITCH instruction which is generated by the com-
piler for a C switch statement. This instruction is executed by traversing a list of CASE
instructions, and comparing the associated constant with the value that was on the stack.

When a match is found, the code following the CASE instruction is executed.

There is also an alternate form of the SWITCH instruction which does not have its
own separate mnemonic. After assembling a SWITCH instruction sequence, the assem-
bler determines the largest CASE value, the smallest CASE value, and the number of
CASEs. If the range of CASE values is less than four times the number of CASE values,
then the alternate form is generated. In the alternate form, a GOTO is generated after
the ENDSWITCH, followed by the address of the first memory location after the jump
table that is about to be created. The original SWITCH instruction is then changed to a
special FAST-SWITCH instruction, and the word following it filled in with the address of
this jump table. The jump table itself begins with two words giving the smallest and larg-
est CASE values, and one word giving the address of the DEFAULT instruction. Follow-
ing this is one word for each value in the range of CASE values giving the address of the
CASE instruction corresponding to that value, or the address of the first instruction after
the jump table if there was no corresponding CASE instruction. In order to keep the
assembler as simple as possible, no attempt is made to go back and remove all the infor-
mation that was filled in for a normal SWITCH statement. All the CASE to CASE
pointers are still in place, although there is no longer a pointer from the SWITCH instruc-
tion to the first CASE instruction. The structure of an assembled FAST-SWITCH state-

ment is shown in Figure 7.

14

When the Maple Machine encounters a FAST-SWITCH instruction, it pops a value
from the stack and compares it with the smallest and largest CASE values. If it is out of
range, it jumps to the DEFAULT instruction or the first instruction after the jump table.
Otherwise it subtracts the smallest value from the popped value and uses the result as an

index into the jump table to fetch the address of the corresponding CASE instruction.

89

7.3. Improving the Interpreter

The first implementation of the interpreter was written with one goal in mind: mak-
ing it work. Time and space efficiency were not considered. Once everything was work-
ing however, it was desired to improve the performance. Although the VAX, on which
the whole Maple Machine system was being developed, was not a potential target for por-
tability (since Maple already runs on the VAX in its compiled form), it was deemed
important to fine tune the interpreter’s performance there so that some measurement of
interpreted versus compiled speed could be made. This would allow some predictions for
performance on potential target machines based on the speed of other compiled programs

on those machines.

F_SWITCH

CASE j=——

[y

CASE] Yb l

CASE

GOTO

DEFAULT <53—§&

GOTO

minipum <=3 | I

maximum

default

case 1

case 2

case 3 W v

Figure 7. Structure of a FAST-SWITCH statement

90

91

7.3.1. Representation of Memory

In the first implementation, memory was represented as an array of bytes. The
evaluation stack was represented as an array of integers occupying the same storage as
part of the main memory. Accesses to the memory were written as C subscript expres-
sions. For example, the following two lines of code fetch the next instruction, and access

the value on the top of the stack respectively:

ir = memory[pc++];

temp = evalstack[evalsp];

Each subscript expression involves the addition of the index value to the base address of
the corresponding array to compute the address of the desired value. Since the first line
of code shown is executed for every instruction, and the code for most instructions
includes at least two examples of the second line, there was a potential speed gain in
using pointer variables, instead of arrays and subscripts. By changing pc to a pointer to a

character, and evalsp to a pointer to an integer, the above two lines of code become:

ir = *pc++;

temp = *evalsp:

Of course, the code for those instructions that make references to memory relative to the
beginning of the Maple Machine memory must add the offset of the memory array to any
addresses. Once the addresses are converted to refer to real machine memory however,
all subsequent references can be done without the additional overhead of a 32-bit addition

operation.

7.3.2. Reducing Overhead

Every real machine instruction that is executed in the process of fetching a Maple
Machine instruction results in an overhead time for each and every instruction executed.
Even if this additional overhead is only one microsecond per instruction, it can quickly
add up. For example, a particular collection of Maple test programs results in the execu-
tion of approximately 440 million instructions. If one microsecond was added to each
instruction, this would result in an additional 440 seconds, or 7 minutes, of required CPU

time. The time required to execute these tests with the current version of the interpreter

92

is 1410 seconds, or 24 minutes, of CPU time. Thus, the additional microsecond per

instruction would result in a 29 per cent performance loss.

To minimize this loss, the instruction fetching sequence was examined in great

detail. The top of the interpreter’s main loop originally looked like this:

for(::) {
ir = memory[pc++]

switch(ir) {

The instruction being fetched was stored in the variable ir because one instruction needed
to know the value of its opcode to extract a short constant from it. The first attempt at

improving this resulted in:

for(::) {

switch(ir = memory[pc++]) {

Unfortunately, this did not result in any increased speed, since the VAX C compiler

already generated the desired code from the original source.

Since the value of ir was needed only for the switch statement, and in the code
implementing one instruction, it was decided that perhaps it was not worth saving. It
could be recomputed by the one instruction that needed it, at a slight cost in speed for

that instruction, but for a gain for all other instructions. Thus, the loop was changed to:

for (;:) {
switch (memory [pc++]) {

The instruction, which originally referred to ir, was modified to refer to memory[pc-1].
The net result of this change was an increase in performance of about 10%, even though

the affected instruction was one of the most frequently executed.

The final change made in this area was the change from an indexed array to a direct
pointer into real machine memory as described in the previous section. This resulted in

the following code:

93

for(;:) {
switch (*pc++) {

Surprisingly, this resulted in only a one per cent performance increase, although the
analogous change for evaluation stack access increased performance by about five per

cent.

7.4. Adding New Instructions

Designing and implementing a virtual machine, such as the Maple Machine, gives
the designer some unique opportunities generally not available to the designers of
hardware machines. We have already mentioned the ability to debug by producing
debugging information from within the machine. A far more important opportunity how-
ever is that of dynamically tailoring the instruction set to the code generated by the com-
piler, and even to the application program (the Maple kernel in this case) being com-

piled.

The problem was determining what instructions to add. Examination of the Maple
source code pointed out some obvious candidates, such as the ?LENGTH, ?ID, and
?CASE_ID instructions corresponding to the similarly named and often used macros.
Further sequences that could be replaced by a single instruction could be discovered by
examining the assembly language output of the compiler. Such an examination however
will only indicate which instructions occur most frequently. What is of greater interest is
the instructions which are executed most frequently. In other words, the dynamic instruc-
tion sequence is more important than the static instruction sequence. For example, the
STACK instruction is only generated once for each function in the Maple source code, but
is executed many times, since each function typically calls many others, often recursively.
To analyse the dynamic behaviour of a program, it is necessary to keep a record of the
instructions executed, and present this information in some usable form. This was done

by means of execution profiling routines that were added to the interpreter.

94

7.4.1. Generating Instruction Profiles

Since each new instruction was to replace two or more existing instructions, it was
not sufficient to simply keep track of how many times each instruction was executed.
Instead, the number of times each pair of instructions was executed was required. One
could this extend this to groups of three or more instructions, although this was not done

due to time constraints; the generated reports would also be very large.

A modified version of the interpreter was created which would keep track of this
information in a large array. With an initial instruction set size of about 60, this required
an array of 3600 integers, or 14400 bytes. A larger array was used to allow expansion of
the instruction set. As each instruction was executed, it and the previously executed
instruction were used as indices into this array, and the corresponding element was incre-
mented. When the interpreter completed execution, this array was written out to a text

file, one row at a time.

Maple was run on the Maple Machine for several representative members of the

Maple test suite, and execution profiles recorded for each one.

A reporting program was then written to make use of this information. All the pro-
file files for one test run were accumulated, and a table was produced, containing one
entry for each pair of instructions that was executed at least once. This table was then
sorted by execution count so that the most frequently executed pairs could be found. The
table is followed by a count of the total number of instructions executed in the test.
Shown below is a sample of the last ten lines of such a table (the instruction mnemonics

and percentages are not part of the output):

95

54, O: 20318714 GOTO, push-tiny-constant 2.3%
58, 0O: 22255884 POP, push-tiny-constant 2.5%
53, O: 26900716 DUP, push-tiny-constant 3.0%
10, 1: 28504394 $+, 1 3.2%
1,58: 29680517 !, POP 3.3%
3,42: 40380808 H#+, ? 4.5%
0, 3: 40893398 push-tiny-constant, #+ 4.6Y
42, O: 66518944 ?, push-tiny-constant 7.5Y%
10,42: 90453729 $+, 2 10.2¥%
0,10: 112539659 push-tiny-constant, $+ 12.7%

889580206 instructions executed

The percentage figures indicate the percentage of number of instructions executed
represented by each pair. The figures cannot simply be added up because each instruc-
tion is represented in the table many times. Adding up the percentages for the entire
table would result in 200 per cent. Adding up the figures for the instructions listed above
gives 53.8 per cent. Thus the instructions represented by the last ten pairs listed account
for somewhere between 26.9 and 53.8 per cent of the total instructions executed (the fig-
ure of 26.9 is the worst-case, if each instruction in each pair in the list was also com-
pletely represented in the other pairs in the list). The excerpt shown above was from an
early test run, before the Maple specific functions (?’LENGTH, etc.) were added, and

before any of the optimizations discussed below were done.

The profile reporting program also generates another output file giving a graphical
representation of instruction pair occurrences. A sample of such an output (correspond-

ing to the table above) is shown in Figure 8.

96

1311111111 2222222222 3333333333 4444444444 5355555555 6666666666 7777777777 8888888888 99999
0123456789 0123456789 0113456789 0123456789 0123456789 0123458789 0123456789 0123456789 0123456789 01234
0: I JQ 1 § DFHO M FLHJLN X B LHF 8 KL NS 4 J BHIH scr
1 K 4K NG 5 J JIA P IREC c rJJ
s 8 J K x
[¢ Q
6:
8
: FP R fr el TH9 48z
&
0:
a5: J S 5 [re Dé 8 A
6: N 6) 4 D TEH 1 MDK BX BH HM
: L 1K L 59 9D 4 HC BS BE
: L 4 1 I R B N r 2 DH BGEC
3 : g E 3R
: J I Cce r CBJ NG CJL r ER
H B L 5 9°C
4: G D X 7C6 AS As
3 Xt [~ L
6: A [+ [+ B
: JJ 4 [+
8: C | 4 LI 1 1C (1)
: LM ¥
:Kl: r r "!) 4 B 1 L
1;: QL HBLMN HXL HL INN J O oot MIX C WP CFCSX HK INO 1 NLJ
44
45:
46: r
47: G B c B c e
48 [+ L) 3 8
9: IL L
0: B
t L L B G CH 4
t I r
t P L L L]
54: P [] JX 7A BC ¥ _JG EADS
: 0 B SCOML MJ ¥ 1 EJL D
56 © A 8K N I
E 48 4 7 E c 17
: P H6 O I - TEM 9
0: n
s 0 4
L ! o | I 4 o A
: N J D
: D 7 ¢ 6
: B CR A cs
6: G
: 5
H 4 D
: R4 e c 879 1 IDX 8k JX B 2] 778 7HCC
: 0 ¥ L 1 EJ 4
s [4
H J | 4 J
1 DE :§ D 4 76X
H | 4 D xJ H ID ICI 1 D 78 C
){IJ ZK ENC T X Ic c 11 1Ky BDC
: n
: R wmmr
0 : D
: r
HE] 3
: L
4: J

Figure 8. Instruction pair execution profile before optimization,

Each row represents the first instruction in a pair, while each column represents the
second instruction in a pair. The letter or digit at the intersection of a row and column
indicates the approximate number of times that pair was executed. The digit "0"

corresponds to 1 execution , "1" to 2, "A" to 1024, and so on, doubling with each digit

97

and then each letter.

Finally, the profile reporting program generates a table indicating how often each
individual instruction was executed. For example, the last ten lines of the table

corresponding to the instruction pair table shown earlier are:

55: 24981788 IF 2.8y
62: 25062277 SCALE+ 2.8%
77: 26829691 push-long-constant 3.0%
1: 38397976 ! 4.37
53: 38553392 DUP 4.3%
3: 40893398 #H+ 4.6%
58: 42387219 POP 4.87
10: 119171345 $+ 13.49
42: 172675935 ? 19.4%
O: 187820516 push-tiny-constant 21.1%

Thus, these 10 instructions account for 81 per cent of all the instructions executed, even
though they represent only 17 per cent of number of instructions (57) initially in the
instruction set. This just confirms the widely held belief that about 20 per cent of the

code in a program does 80 per cent of the work.

7.4.2. Analysis

Armed with the information provided by the profiling program, it is possible to
determine which instruction pairs can be reasonably replaced with a new single instruc-
tion. There is even sufficient information to detect instructions that are never executed

except as part of the same sequence.

Two sequences, one ending in a certain instruction, and the other beginning with
that same instruction, might actually represent a commonly occurring sequence of three
instructions. This is especially likely if the two sequences have approximately the same
frequency of occurrence. It is even more likely if the frequency of occurrence of the
instruction common to the two sequences is similar to the frequency of occurrence of

those sequences.

98

For example, consider the following two sequences from the table presented previ-

ously:
0, 3: 40893398 push-tiny-constant, #+ 4.6%
3,42: 40380808 e, ? 4.5Y

The number of occurrences of the two is very close, and one might suspect that the
sequence "push-tiny-constant, #+, ?" is quite common. On examining the individual fre-

quency of occurrence of the "#+ " instruction, we find the following:
3: 40893398 H+ 4.6%

Notice that this instruction occurs with exactly the same frequency as the sequence
"push-tiny-constant, #+". This implies that this instruction occurs only as part of such a
sequence. One can further conclude then that any "#+" instruction preceding a "?"
instruction must also occur as part of a "push-tiny-constant, #+ " sequence. Thus, of all
occurrences of such sequences, 98.75 per cent are followed immediately by a "?" instruc-

tion. The few that aren’t occur infrequently enough to not warrant further consideration.

Since this three instruction sequence starts with an instruction to load a tiny constant
(one between 0 and 127 inclusive), it is not clear from the profile information which con-
stants represent most of the occurrences of this sequence. However, it is known that this
sequence fetches the Nth parameter of a function, and that most functions in the Maple
kernel take three or fewer parameters. One might suspect that the tiny constants 0, 4,

and 8 would thus represent most of these cases. Thus the instructions,

ARG_O_FETCH
ARG_1_FETCH
ARG_2_FETCH

were added to the instruction set to correspond to the sequences:

O #+ ?
4 H+ 2
8 #+ ?

Examining the instruction pair profile table for the corresponding instructions to fetch

99

local variables (as opposed to parameters), we see the following:

0,10: 112539659 push-tiny-constant, $+ 12.7%
10,42: 90453729 $+, 2 10.2¥%

The individual execution profile of the "$+ " instruction is given by:
10: 119171345 $+ 13.4%

This time, we can see that not all occurrences of "$+" occur after a "push-tiny-constant”
instruction, although 94.4 per cent do. Similarly, 75.9 per cent of them occur before a
"?" instruction. Thus, somewhere between 71.3 and 75.9 per cent occur as part of the

three instruction sequence.

This sequence is used to fetch the values of local variables. Examining the Maple
source code indicates that most functions have seven or fewer local variables, so the fol-

lowing instructions were added to the instruction set:

FRAME_O_FETCH FRAME_3_FETCH FRAME_6_FETCH
FRAME_1_FETCH FRAME_4_FETCH FRAME_7_FETCH
FRAME_2_FETCH

In addition to the ARG_n_FETCH and FRAME n_FETCH instructions, corresponding
instructions to store values in the local variables and parameters were added. Although

these occur less frequently, they were deemed a source of possible performance increase.

7.4.3. Modifying the System

To add the new ARG_n_FETCH, FRAME _n_FETCH, ARG_n_STORE, and
FRAME _n_STORE instructions to the instruction set, opcodes were assigned to them, and
code was added to the interpreter for each instruction. Then, each instruction and the
sequence that it was designed to replace was inserted into the peephole optimization table

in the assembler. For example, the table entry to replace,
8 §+ 2

with,

100

FRAME_2_FETCH
is:
{ {TINY(8),EFRAME_ADD,FETCH, O}, {FRAME_2_FETCH,O} }

TINY is a macro which simply adds 128 to its argument, which gives the instruction
opcode to load the corresponding tiny constant. All the other identifiers are constants

representing the corresponding opcodes.

After modifying the assembler and the interpreter, both were recompiled. The
Maple kernel assembly language file (produced by the compiler) was then reassembled by

the new assembler.

7.4.4. Iterative Improvement

Once a few new instructions have been added to the Maple Machine, the profile
tables become invalid. After all, many of the instruction sequences that accounted for
most of the execution time have now been replaced by other instructions. Therefore, it is

necessary to run all the profiling suite again to generate new profiles.

Theoretically, one could carry out this procedure indefinitely. In practice however,
this is not practical. There will come a time when one of two things will happen. One
will either run out of opcodes to assign to new instructions since there are only 128 possi-

bilities, or further improvements will be negligible.

Initially, examination of the profile tables indicates that very few instructions
account for most of the instructions executed. By reducing common sequences to indivi-
dual new instructions, the frequency of execution of the sequence members goes down
since many of their occurrences have been replaced by executions of new instructions.
As a result, the distribution of execution occurrences of individual instructions becomes
more uniform. This fact is visible pictorially in the graphic representation of the instruc-

tion profile. Compare the profile in Figure 9 below with the one in Figure 8.

1111111111
0123456789 0123456789

LLGJDGEHD

c
8
8
[
N
1
L

LI
~

=
™
COTNCMNO
~OOTME N - N

&

OOBINRARWNHOGBINAS WG
MNEOXO~

:M:uﬂﬂ!hﬂﬂ"

»
=N W NN OQMIEIT @ QMY
> >

m

™~
- oo
L)
B M e e»wo

L 3
~
o
-

BE R
GEHCIDCIC

JEHG FPOAE
ICKCJISIErY

O mo x

R rIRRsRs
WNHOVO IR NS
—

=
“ ~

a

:

o
OGMmMMN— WY

an meg 9o

"
- Qe Dﬂg [L]
- O, -

~
Q X' EBR X M

OB 0o T G
"~
™
-

cr c 7 A
:LGJ L XA EJTI BSD
H s c _A
rxre cnfel o

BUNHOOBNONRWGNHOGEARARWNHOOBIRWRR WL DOB AP RS

(119}
o
-
gn
~

MO It

-
|mNO e ﬁNF
MO
!
=0
1]

~

QUEDHGNEGLLONEe O
Q

2222222222 3333333333
0123456789 0123456789
I 8DBDEFHN M_ FLRJIM
9
DB FE J¢ EX 4D
9DD kK8 ¥ Jc C Dt
R E D H LY
7D) § B
C94 CLM JXCI 9
9 E 4]
g E 8H KL DH J HCK
;GE 8 CHI CEH 9D BAH
%6% 87 1IJR H FE F5J
éag F JAs EE ZE b
g g Z8 D8 £ BD ACE
FEB c
s S
n
J Ix L 59 9
capes 6 J
< crce r GBal
c) 4
D
[+
B
B
| S 4
JEDE2 cr c Jr3
R
E6E | 4 D D
c 6
8
GCEAH
J1¢C
ADTE
7
Jer
ces
BCHB
JED
7 6 6
[8
ARBEB FF c 87
rrr
8 r
D XJ R XD 1GJ
9D B MDD IK ZLC
r
HCCBA KE ¢C B JC
1EC9 1
7 BAC? HC 4 J
EHE
FHC
CDéD CLICBED 8 9
rsc
HEZR

4444444444 5555555555 666666666
0113456789 0123456789 011345678
JL B IHF @ XCNS
76
JK
1
¢ 1
LLLL & lgl!l xJ
¥ JrEx r cgscn HJ
9 DACR C GCDR THB
e |
L DC b4 lagGC DR T 4
HE EC D} C99JS g L
B N9IK C CJ1I xJ
H DE 971 311 CE
8 J 8D C! rs
¥ CC .HD' G
89BD cD cr
7 9C
2 XD
D c
) 4 .| %l EBL r
c
1c cr
4 c
r D 76
XL [
c
JJ [4
c MLE n
LN
4 { I »
189 1IL CACY nr c
JD K
4
c B C
B K JC |
1L
L 8 c
r
L n
Ck &6 TA R
L3 SCCLLE NJ F
9 8CK8 Ma é
B3 4
J B
[+ b
E
] L 4
GH A
¢
) 4
® B JDIES Js B
L c
[
D b 4
1 D 78
JN ac
B 7
LH
JiJe 1J KBKH . ? 6 75C
€ cC B9 7 R D
GAIR HB CE6HE 1K c
¢ 3
r 1 B
Hrce c GC;H! HJ
| 4 6
H X 1

6
9

Q)
(4]

(a1 J

(1"

c

777777 8888888888 99999
456789 0123456789 01234
'!HHH NITIN L scr
4
D!g Jc Is J JIr
ACJ JCJ JK 1 IXC
DR DI C H CDH
89 M 48E
GA [+
IL H 23 1 108
£l) D 4
AJH EM94 L 4 I DCD
] GC 5
CLK LEF BL J HEE
CD 1 8
Acé HEZ ax B CED
[DG 6J 1 DCA
[+ 5
4 E C H G FDC
A c 63 9 DDC
8 13 DA
EK H
BS bJ HBE
DH N K CBGIC
H 3
1) 4 1 J ZH
[9
AS C 8 B¢
(1]
AX
CJL LJSD X F X BIH
] r C (4
H cC
8
cH 4
HEK
JC " CEADS
rIL B D
$1C 1 4
7
7L) 4
4C D 7
(3.3
9 4 1 r A
J D
cs
778 D ¥ K7HCC
El I 4
H E
J 4
CH T6E
[3 n
b & AJ L CK 8 BDC
8 [
cx BEC 1 L XIA
] 1 4
H CE4
ool CBE X C_HED
DE1 r 9
61 L
DXJ FLHC BJ 1 pGce
JJ [+
XK [} 6
cJ H
1’

3

Figure 9. Instruction pair execution profile after optimization.

101

The first contains many distinct horizontal and vertical bands indicating commonly exe-

cuted instructions, while the second is more uniform. The first was generated before the

first new instructions were added, while the second was generated after four iterations of

optimization. The wide white bands in the first represent the unimplemented instructions;

102

the profiles were normalized so that the same opcodes represent the same instructions in

both profiles.

One can stop adding new instructions then when the effort in doing so begins to stop
paying off. If no instruction or sequence of instructions accounts for a large percentage

of execution time, then no single optimization will result in a large performance increase.

7.4.5. New Instructions

This section summarizes the new instructions that were added during the course of
the iterative improvement discussed. These instructions are not categorized, since many
of them perform operations that are a combination of several very different simpler

instructions.

Each instruction is shown, followed by the sequence that it replaces. Many of these
instructions replace many original instructions. These were often discovered when earlier
new instructions appeared in common sequences with original instructions or other new

instructions.

None of these instructions have a mnemonic, since they can only be generated by
the assembler. They are never generated by the compiler, so the assembler does not
accept them as input. Instead of a mnemonic then, the symbolic constant used within the

assembler and interpreter source code is shown. The new instructions are described

below.
FRAME_n_FETCH 4an $+ ?
ARG_n_FETCH an #+ ?

The FRAME _n_FETCH instruction is actually several instructions, for each value of n
from 0 to 6. When one of these instructions is executed, the nth word in the local vari-

able space of the currently active procedure is fetched and pushed on the stack.

Byte sized local variables use the long form, with a "B?" instead of "?" instruction.
Only word sized variables that start on a word boundary, and fall within seven words of
the beginning of the local variable space will be fetched using the short form. For exam-

ple, in a C function with variable declarations,

103

int a; char b; int c; char d; int e; char f:

int g; char h; int i; char j; int k; char 1:

the variables a and i will be fetched using FRAME_O_FETCH and FRAME_5_FETCH
respectively. The remaining variables require the long form, either because they are byte
sized, or they are word sized but do not fall on a word boundary. Since the large major-
ity of procedures in the Maple kernel (and in most C programs) have less than 8 local

variables, and these are almost always word sized, the longer sequence is rarely used.

The ARG_n_FETCH instruction, which is also several different instructions, is similar
to the FRAME_n_FETCH instruction. Valid values for n are 0, 1, and 2. These instruc-

tions will fetch the nth argument of the currently active procedure.

All arguments are passed as words, so even byte sized actual parameters can be
fetched by these instructions. The vast majority of procedures in the Maple kernel take

less than four arguments, so the longer form is rarely used.

FRAME_n_STORE 4an $+ 1
ARG_n_STORE 4n #+ 1

The FRAME_n_STORE and ARG_n_STORE instructions are used to store values in local
variables and parameters respectively. The same restrictions as discussed for
FRAME _n_FETCH and ARG_n_FETCH apply.

ADD_FETCH + 7
SCALE_ADD_FET SCALE+ ?
FRAME_ADD_FETCH $+ 2
A_O_F_O_FETCH O #+ 2 0 $+ 2
F_O_SCALE_ADD_FET 0 $+ 2 SCALE+ ?

These five instructions combine common sequences of fetching and address arithmetic.
The FRAME_ADD_FETCH instruction in particular takes care of local variable fetches not
covered by FRAME_n_FETCH. The A_O_F_0_FETCH instruction fetches the first argu-
ment and then the first local variable to the top of the stack. The F_0_SCALE_ADD_FET
instruction is used for dereferencing a pointer to an integer with a subscript stored in the

first local variable, a very common operation in the Maple source code.

104

ROT_STORE ROT !
STORE_POP ! POP
ROT_STORE_POP ROT ! POP

Each of these occurs quite frequently when a value is being stored indirectly through a
pointer or array. The POP operation is often performed afterwards to discard the result.
It should be noted that the code to implement ROT_STORE_POP is far simpler than the
concatenation of the code required to implement the ROT, "!", and POP instructions, thus
saving even more than just the overhead for two instruction fetches. Many of the other

new instructions also exhibit such simplification, although to a lesser degree.

IF_EQUAL == IF
WHILE_GREATER_FOR > WHILEFOR

These represent the most common conditional test and loop termination conditions respec-

tively.
FUN_CALL_O 0 func-name
FUN_CALL_1 1 func-name
FUN_CALL_2 2 func-name
FUN_CALIL_3 3 func-name

These four instructions are used to call functions with zero, one, two, or three arguments
respectively. They eliminate the need to push the argument count on the stack and pop it
off again. These optimizations required a change to the body of the assembler, since the
peephole optimizer was not powerful enough to deal with an arbitrary function identifier

(address) as a recognizable token.

7.4.6. Other Optimizations

In addition to using the peephole optimizer to translate common code sequences into
new instructions, it was also used to translate inefficient code sequences into more effi-
cient ones. The compiler generally generates good code, but it does sometimes produce
code bursts that are less than optimal, but are easily corrected by the peephole optimizer.
Each of these additional optimizations is listed below, showing first the original code, and

then the replacement code:

105

BNOT 1IF IFZ
BNOT TIFZ IF
++ POP POP
-- POP POP
W+ POP POP
W- POP POP
VAL? POP POP
1+ ++
4 + W+

Opportunities for further optimization often result after one optimization has been
applied. Whenever a peephole optimization is made, the entire table is tried again to

produce more improvements. For example, after optimizing the sequence,
DUP 4 $+ t poP

to the shorter sequence,
DUP FRAME_1_STORE POP

further optimization is possible. The following optimizations are those that can only result
from earlier optimizations, since some of the instructions involved cannot be generated by

the compiler:

DUP FRAME_O_STORE POP FRAME_O_STORE
DUP FRAME_1_STORE POP FRAME_1_STORE
DUP FRAME_2_STORE POP FRAME_2_STORE
DUP FRAME_3_STORE POP FRAME_3_STORE
DUP FRAME_4_STORE POP FRAME_4_STORE
DUP FRAME_S5_STORE POP FRAME_5_STORE
DUP FRAME_6_STORE POP FRAME_6_STORE
DUP ARG_O_STORE POP ARG_O_STORE

DUP ARG_1_STORE POP ARG_1_STORE

DUP ARG_2_STORE POP ARG_2_STORE

106

7.5. Some Performance Figures

To evaluate the performance of the Maple Machine at various stages during its
development, a subset of the Maple test suite was run. This is the same subset that was
used to perform the profiling. During performance evaluation, the interpreter was first

recompiled with profiling removed.

The results of the performance tests, along with the number of instructions executed
during the corresponding profile run, and the size of the code image, are summarized

below at several points during the Maple Machine’s development. These points were:
1. First non-debugging run, with no peephole optimization.
2. After adding the special instructions 2LENGTH, ?ID, and ?CASE_ID.

3. After adding the argument and local variable access shortcut instructions such as
ARG_2_FETCH.

4. After adding all other new instructions and other peephole optimizations.

In addition, the times and code image size for compiled Maple running the same tests on
the same machine (VAX 8650) are also given. CPU times are rounded to the nearest

100 (except for the compiled time), due to inaccuracies caused by varying system loads.

TEST TOTAL CPU CODE IMAGE INSTRUCTIONS SPEED RATIO
RUN TIME SIZE EXECUTED re COMPILED

1 3200 207,100 889, 580, 206 65:1

2 3100 198,548 862,939,589 63:1

3 1800 173,920 572,889,565 37:1

4 1400 156, 380 441,301,887 29:1
CoMP 49 163,840 N/A 1:1

It appears from the chart that there is a very close relation between code size and number
of instructions executed. A linear regression test on the results, with code size as the
independent variable, and instructions executed as the dependent variable reveals a corre-

lation coefficient of 0.99, indicating an extremely close correlation.

A Real World Example: The Oberon System

In December of 1988, the author was asked to port Maple to the Ceres workstation
running the Oberon operating system. Ceres and Oberon were developed by a group
headed by Professor Niklaus Wirth at the Eidgendssische Technische Hochschule (ETH)

in Ziirich, Switzerland.

8.1. A Brief Introduction to Ceres and Oberon

Ceres is a powerful single user work station based on the National Semiconductor
32032 CPU. It features a high resolution bit-mapped display screen, two megabytes of
memory, a 40 megabyte fixed disk, a floppy diskette drive for backups, a network inter-
face, and a keyboard and mouse. For further details, the reader is referred to the report

entitled "Hardware Description of the Workstation Ceres" [6].

Oberon is the operating system for the Ceres workstation. Its development was
begun in late 1985 by Professors Niklaus Wirth and Jirg Gutknecht. The goal was "to
develop an operating environment especially tuned to personal workstations, and a

language to implement the system” [25].

Oberon presents itself to the user as a multitasking multi-window environment,
although in fact there is only ever a single process running. The user issues commands,
which are directed at the process associated with a selected window (a viewer in Oberon
terminology). The contents of a viewer are persistent (they do not scroll away, and the
viewer does not vanish unless the user closes it), and can be edited and re-used as input.
There is no distinction between input and output in the traditional sense, where input is
what the user types, and output is what the program displays. Both input and output are
all part of an editable text under Oberon. Procedures are invoked, and operate on the
text that was last selected with the mouse, or on the contents of the viewer that was last
Jocused on. Since viewer contents are persistent, and one can have multiple viewers on
the screen at one time, the user can be pursuing several tasks at one time, directing com-
mands at the different processes. When a process completes a command, the user can

then issue a different command to that process, or to another. In the words of the

107

108

system’s designers, Oberon can be considered a "single process multitasking system." The
user plays the role of task scheduler that is typically performed by the kernel of other

multitasking operating systems.

One of the design goals of Oberon was to make it user-friendly. According to the
designers, one of the greatest impediments to this goal is that of hidden states. A hidden
state is one where the user is expected to perform some action that is different than the
normal actions allowed by the system. The state is termed "hidden" because there is no
real indication that the system is in such a state. A good example familiar to many
readers is the system of modes used by many text editors, such as the UNIX vi editor. In
one mode, the keys on the keyboard are used to move the text cursor around, while in
the other mode, the keys are inserted into the text. It is impossible to tell by looking at
the screen what mode or state the editor is in. This problem is brought about by the fact
that control of the keyboard is shared among two or more tasks (not necessarily con-
current ones). When a text editor is in cursor movement mode, the cursor movement
task is handling keyboard input; when it is in insertion mode, the text entry task is han-

dling the input.

To prevent such modes or states, Oberon applications never seize control of the key-
board or mouse. All keyboard input results in the typed characters being inserted into the
text in the viewer that is currently active (contains the text cursor). An application task is
only given control when specifically invoked, perhaps with some marked region of the
text as an argument. A programmer’s text editor for example is simply a collection of
commands that can be invoked to operate on the text in a viewer. It is not a program
that actually controls such a text, or receives input from the user. Thus, the user can per-
form any other tasks between invocations of text editing commands. There is no need to
write a complex text editor capable of dealing with multiple files, because the user can
simply invoke the text editor commands on a different text in a different viewer. One

can even have multiple views of the same text by opening another viewer on that text.

There is only one officially sanctioned exception to this rule. When the user wishes
to log onto the network to obtain access to network services, such as the laser printer, a
password must be typed after invoking the Net.Server command. The process that reads

the password does take over the keyboard, since it would not be secure to type the

109

password on the screen, highlight it, and then invoke the command. In an ideal world
where security was unnecessary, even this exception could be removed, as passwords

would not be needed.

Oberon consists of a collection of modules, each of which contains data types, con-
stants, variables, and procedures to operate on some class of objects. These modules are
written in the language Oberon [26], which is a successor to Modula-2 [24]. Several
modules comprise the "inner core” of Oberon, which provides resource management,
fixed disk drive management, file directory handling, file /O, and module loading facili-
ties. To these are added an "outer core" which provides modules to deal with texts, pic-
tures, and viewers. A program written for Oberon can import any of these modules, and

can then access the public parts thereof.

8.2. Obstacles for the Oberon Port
There were several restrictions imposed on the porting of Maple to Oberon.

First and foremost, there is no C compiler available for the Ceres, although the
hardware architecture is capable of supporting a C implementation that could run Maple.
The designers of Oberon consider reliability very important, and consider the lack of type
safety and run-time checks in C to make reliability impossible to ensure. Thus, the port

had to be done by way of the Maple Machine.

The second restriction was that the author of this thesis had to perform the port in
Switzerland in the space of about two weeks. If it was not completed in that time, he

could not simply go back the following week and continue!

Fortunately, the Maple Machine approach proved up to the task at hand, and the
port was completed successfully. Some of the obstacles encountered along the way are

outlined in the following sections:

8.2.1. The User Interface

As was described earlier, the user interface methodology of Oberon is drastically dif-
ferent from that of UNIX and similar systems. This seemed at first to be the largest obs-

tacle, since Maple was written with the more traditional user interface in mind.

110

The Oberon version of Maple would have to be able to accept input that was sent to
it as an argument (by selection) when invoked, and retain its state between such invoca-

tions (otherwise it would essentially be a batch processing version of Maple).

8.2.2. The File System

The Oberon file system is also very different from the UNIX file system. There is
no concept of a directory hierarchy. All files are contained within one large directory,
just like the names in a telephone book. Maple’s libraries on the other hand are stored in
a complex hierarchy of directories, with the procedures for various sub-functions stored in

directories below those of higher level functions.

Some means would have to be found to map the Maple library path names to the file
names of Oberon. The Maple kernel already contains an internal function to perform
such mapping on machines that do not have a directory structure. This function must be
rewritten whenever Maple is ported to such a machine by traditional means. In this case
however, the responsibility for translating the names would have to lie with the Maple

Machine, since the goal is to be able to run the same executable on all host machines.

There are also differences between the file /O functions provided by UNIX, and
those provided by Oberon. Under the UNIX model of file /O for example, the process

of creating and writing a new file is briefly summarized by:

1. Create the file and give it a name.

2. Write the data to the file.

3. Close the file.

Under Oberon on the other hand, the process is slightly different:
1. Open a nameless file for writing.

2. Write the data to the file.

3. Register the file by giving it a name and closing it.

In addition, Oberon distinguishes between texts and files. A text is simply a stream of
characters which may or may not be visible in a viewer. A file on the other hand is a

stream of bytes. When a text is stored in a file, various header information regarding

111

fonts is stored at the beginning of the file. Thus, a Maple procedure reading a file con-
taining text must skip this header information, while one reading a binary file must read

the entire file.

8.2.3. The Oberon Programming Language

The last obstacle was again the lack of a C compiler. The only existing Maple
Machine implementation was written in C for a VAX running 4.3 BSD UNIX. If
Oberon had a C compiler, the Maple Machine would be fairly easy to port. Of course,
Maple itself would be easy to port directly then too.

The Maple Machine would have to be ported by rewriting it in the Oberon language.
The Machine was intended to be compact and easy to rewrite on any conceivable target

machine, so this would be the real test of this contention.

8.3. Porting the Maple Machine

The first step in porting the Maple Machine was to become intimately familiar with
the details of the Oberon operating system. It was radically different from anything the
author had used before, and so seemed a formidable task. Much to the author’s surprise,
he had a very intuitive understanding of the system after only one day! The credit for
this lies with the designers of the system however. It is the clear, simple design of the
system, coupled with the excellent documentation that they have produced, that made this
feat possible. Others (particularly in industry) could learn much from their example. By
the end of the first day, a rough sketch of the code required to completely hide the

Oberon interface from the Maple kernel running on the Maple Machine had been made.

8.3.1. The CFileIO Module

The first thing that was actually implemented was a module called CFilelO. This
module exported several functions with semantics similar to the file /O functions pro-
vided by the UNIX C run-time library. All the differences in file systems were hidden

therein.

112

File naming convention differences were resolved by a simple algorithm. Each
Maple library file name, possibly containing several directory names, was passed through
a filter which removed the "/" characters separating the directory names, and capitalized
the first letter after each such character removed. The resulting name was unique among
all the other Maple library file names, and less than 32 characters in length, which is the
limit imposed by Oberon. Any call to the functions in CFilelO which dealt with a file
name could be passed a UNIX style name. This name was converted before the file was
actually opened for reading or writing. A notable side effect of this algorithm was that
Oberon style file names would pass through intact, allowing Maple users to use native file

names.

The difference between text and binary files was also easily resolved, although only
in the context of Maple. All binary files that Maple opens end with the two characters
".m". The CFilelO routines responsible for opening files thus examined the file name to
determine its type. If the file was a text file, any header information in the file was
parsed and skipped. Text files opened for writing were treated the same way as binary

files, since text files did not require this header information.

Once the CFileIO module had been completed, a small test module was written (in

Oberon) to use these procedures.

8.3.2. Writing the Interpreter

The next step was to implement the Maple Machine proper. Before leaving for
Switzerland, the author had written a version of the Maple Machine in Modula-2. No
suitable Modula-2 compiler was available for testing, but the program was syntactically

correct as verified by a Modula-2 compiler on an IBM Personal Computer.

A first attempt was made to implement the Maple Machine by simply translating the
Modula-2 program, since Oberon is generally a subset of Modula-2 (but with many
improvements) [27]. It was quickly pointed out however that such an implementation
would be quite slow. This was because the Modula-2 version used arrays to represent
memory, and all array accesses under Oberon involve a run-time range check. Further
inquiry with Professors Wirth and Gutknecht revealed that there were several standard

(but undocumented) procedures recognized by the Oberon compiler. Each of these

113

would actually generate a single machine instruction, such as a memory load or store.
With this new information available, it was decided that a far better approach would be
to translate the C version of the Maple Machine, which already worked in terms of
pointers instead of arrays. Despite the vast differences in syntax, this actually turned out

to be quite simple to do as a result of these special standard procedures.

8.3.3. Intrinsic Functions

Once the entire basic instruction set had been implemented, the next stage was to
implement the intrinsic functions. Some of these were quite trivial to implement, since a
corresponding function existed in the Oberon library. For example, abs() was one of

these, which corresponds to the Oberon standard procedure ABS.

The file /O functions were also straightforward to implement, since they could be
written in terms of the already completed CFileIO module. The various string handling
functions used by the Maple kernel, such as strcat() are very well defined, and were easily

implemented in Oberon.

The more difficult functions to implement were those concerned with system specific

features, and those concerned with the user interface.

The system specific functions supported by the Maple Machine are exit(), getenv(),
isatty(), time(), times(), signal(), and system(). The functions sbrk(), setjmp(), and
longjmp() are system specific when performing conventional ports, but their definitions

have been completely fixed within the context of the Maple Machine.

The exiz() function had to be implemented quite differently from the implementation
under UNIX. No Oberon task ever really exits. Whenever a task completes a computa-
tion, it returns control to the user, but its state remains fixed. It is as if the task were
suspended. This ties in closely with the user interface discussion later in this section. The
exit() function of the Oberon Maple Machine simply sets a flag that indicates that Maple

should be restarted the next time it is invoked, rather than resumed.

Oberon does not support the concept of environment variables. Thus, the geteny()
function was implemented to return a pointer to a Maple Machine address containing a

zero byte, which indicates that the desired environment variable was not found. Maple

114

deals gracefully with this situation, since environment variables are used to specify

optional parameters.

The function isatty() is used under UNIX to determine that the specified I/O channel
has not been redirected. In other words, data written to or read from the associated file
will be displayed or received from the user’s terminal. There is no concept of redirection
under Oberon, since all output goes to a text, which can be stored in a file later at the
user’s discretion. Thus, the function isarty() was implemented to always return true for
the standard input, standard output, and standard error file descriptors. Refer to the dis-

cussion on user interface issues below for more details.

Oberon does not provide a function to return the number of seconds of CPU time,
or the number of seconds since some arbitrary date. Thus, a new module, called
Timelnfo had to be written to support the implementation of time() and times(). The only
public procedure in this module simply reports the number of seconds since 00:00:00 on
March 1, 1980. An internal procedure hides the details of accessing the Ceres’ real-time
clock chip. The time() function merely returns the current return value of
Timelnfo.GetTime. The rimes() function also computes this value, and subtracts from it
the time that current Maple process was started. The result is then multiplied by 60 to
give the number of 60ths of a second of CPU time used. Whenever the Maple process is
suspended, the total CPU time used so far is saved, so that the time between invocations
does not contribute to CPU time. Thus, times() will always return the number of seconds
that the CPU has actually spent running the Maple Machine since the last time the Maple

was restarted.

Under UNIX, when the user presses CTRL-C, a signal is sent to the foreground pro-
cess. If that process has not set up a signal handler, it is aborted, and control returns to
the shell. If on the other hand it has set up a handler, that handler is given control.
Maple under UNIX sets up a handler to catch the CTRL-C signal, and abort the current
computation, returning the user to the Maple prompt. Oberon does not provide a signal-
ling system, so a different approach was taken. Instead, the Maple Machine calls the
keyboard handler whenever a function call is made, to determine if any keys have been
pressed. If so, it seizes control of the keyboard just long enough to read that one key,

and transfers control to the signal handler whose Maple Machine address was specified by

115

a call to the signal() function. The notion of no hidden states is not violated, since the
Maple Machine only seizes control of the keyboard to read one key, and then only after

the key has been pressed; the machine never waits in a hidden state.

The last system specific function, system(), was simply implemented as a null opera-

tion. It displays the message,
maple: function system() is not implemented

in a system status viewer. This function is only ever called if the user asks Maple to exe-
cute an operating system command via the "!" directive. This is not necessary under

Oberon, since the user can execute any operating system command at any time.

8.3.4. Hiding the User Interface

The last remaining task was to hide the user interface methodology of Oberon from

programs running on the Maple Machine.

Output was straightforward to implement. The intrinsic functions that might be
called upon to write to the standard output, such as printf() and fprintf(), were imple-
mented to write to a text in a viewer. The appropriate calls to create such a text and
viewer were inserted into the main procedure in the Maple module. Every time this pro-
cedure was invoked, it would first check to see if the viewer exists (it may not have been
created yet if this was the first invocation, or the user may have closed it), and then

create the appropriate viewer if not.

Input was the more complicated portion to implement. In a typical Maple imple-
mentation, the Maple kernel makes a call to the run-time library function getc() to read a
character from the standard input. The library function will read such a character, and
return it to the caller. Procedures under Oberon on the other hand never wait for input.
Instead, they are passed input as an argument or as the most recently highlighted block of
text when they are invoked. They then process this information and stop executing,

returning control to the user.

To reconcile the Oberon approach with the more conventional approach used by
Maple, a special procedure called ExecuteGetC was written. This function would retrieve

a character from the last argument passed to Maple, and return it in the return value

116

register of the Maple Machine. If on the other hand there were no more characters in
the argument, ExecuteGetC would return FALSE. The Maple Machine would then set an
internal flag indicating that further input was pending, and then terminate execution.
When Maple is next invoked, it will notice that the flag is set, call ExecuteGetC again to
fetch the first character in the argument to the new invocation, and then continue execut-
ing where it left off. This is all made possible by the persistence of state between invoca-

tions of commands. A simplified version of ExecuteGerC is shown below:

PROCEDURE ExecuteGetC(): BOOLEAN:
VAR
c: CHAR;
BEGIN
IF (stdinText = NIL) OR (Texts.Pos (reader) >= stdinTo)
THEN
RETURN FALSE
ELSE
Texts.Read (reader,c) ;
retVal := ORD(c);
RETURN TRUE
END
END ExecuteGetC;

The identifier stdinText refers to the text in which input was last highlighted using the
mouse, while stdinTo is the index into that text of the first character after the highlighted
text. The actual implementation of ExecuteGetC is more complex, since it attempts to
supply the trailing semicolon and NEWLINE characters required of Maple input. This is
so that an expression can be selected from the middle of a sentence in a document, for

example, and passed as input without having to edit these extra characters in first.

In the CASE statement responsible for executing the intrinsic functions, the code for

the gete() function is as follows:

117

PROCEDURE Executelntrinsic(): BOOLEAN:

BEGIN
CASE ir OF
| GETC:
IF argList[0O] = STDIN THEN
IF "ExecuteGetC THEN
inputPending := TRUE;
RETURN FALSE
END
ELSE
retVal := CFilelO.FGetC (argList[0])
END;
END;

RETURN TRUE

END Executelntrinsic:

What this does is first check to see if the input is requested from the standard input. If
s0, ExecuteGetC is called to put a character in retVal. If this fails, due to lack of input,

the inputPending flag is set, and the procedure Executelntrinsic returns FALSE.

Finally, the procedure Maple.Evaluate, which is invoked by the user wishing to

evaluate an expression, looks like this:

PROCEDURE Evaluate:
BEGIN

(* if Maple has not been reset, then restart it *)

IF "mapleReset THEN
LoadBinary;
sigHandler := O;
retStackPtr := retStackBasePtr:
argPtr := evalStackBasePtr - 2 * WORDSIZE:
framePtr := evalStackBasePtr:
evalStackPtr := evalStackBasePtr:
inputPending := FALSE;
startTime := O:
CFileIO.CloseAll;
mapleReset := TRUE
END;
startTime := TimeInfo.GetTime() - startTime;

(* find the most recently highlighted selection *)

EindSelection(stdinText,stdinErom,stdinTo);

IF

stdinText # NIL THEN

Texts.OpenReader(reader,stdinText,stdinErom)

END;

IF

inputPending THEN

IF ExecuteGetC () THEN
END;

inputPending := FALSE

END;

(*

main interpreter loop *)

LOOP

118

119

SYSTEM.GET (pc, ir) ;
INC (pc) ;
CASE ir OF

| INTRINSIC:
IF "Executelntrinsic() THEN EXIT END:

END
END;
startTime := TimeInfo.GetTime() - startTime:

END Evaluate:

Using this approach, it was possible to run Maple on the Oberon Maple Machine without
so much as recompiling it. The same executable that ran on the Maple Machine on the
VAX also runs under Oberon. All of Oberon’s user interface philosophies were adhered

to, without changing the Maple source code at all!

Once Maple was running successfully, it was recompiled however to insert a serial
number, and to change the user prompt. The default user prompt is simply the ">" char-
acter. What the user types then appears after the prompt. Since the user does not type at
the prompt when Maple runs under Oberon, this prompt simply appeared at the beginning
of each line of Maple output. This resulted in the first line of output of each calculation
being shifted right by one character position. The prompt was changed to be a ">" char-

acter followed by a linefeed, so that output would begin on the next line instead.

8.3.5. Running Maple Under Oberon

Once the entire Maple Machine had been implemented, initial tests began. The first
task was to transfer the Maple executable, as compiled by the Maple Machine develop-
ment tools, to the Ceres. Due to the developmental nature of the Ceres system, tools for
moving large quantities of data between a Ceres workstation or network and the outside

world were not well refined. The transfer of the Maple executable was eventually

120

accomplished by converting it into a text file using a UNIX utility called uuencode, split-
ting the resulting file into about eight pieces, and then sending them to the Ceres worksta-
tion by electronic mail. A graduate student at ETH had written a uudecode utility for
Oberon, so that it was then a simple matter of recombining the separate parts and con-

verting them back into a binary file.

The first attempt to run Maple on the Oberon Maple Machine resulted in a system
crash. This was not surprising, since the Maple Machine was a fairly complex thing to
write as one’s first program on a new machine under a new operating system and in a
new language. The crash was eventually traced to an error in the garbage collector,
which would not return if one requested more than half the available storage. After
reducing the size of the request, another attempt was made. This time, the Maple logo
actually appeared before the system crashed. This was a better success rate than the first
attempt on the VAX, due in part to the fact that the compiler and assembler were

already debugged at this point, and the executable was known to be valid.

Oberon currently does not provide any extensive debugging facilities. All that was
available was a fairly detailed symbolic dump of all global and local variables in a given
module. Fortunately, this information immediately pointed out some errors in the Maple
Machine implementation. A number of errors were fixed, and a careful code reading

uncovered some more errors, which were also fixed.

The next attempt at running Maple actually succeeded, for a while. The logo
appeared, the prompt appeared, and Maple could be asked to perform calculations with
real numbers and polynomials. This milestone occurred only one week and one day after
the author’s arrival in Switzerland, and served to demonstrate the viability of the Maple

Machine approach to portability; most conventional ports of Maple take longer than that.

8.3.6. Porting the Library

Maple uses a large library of routines written in the Maple programming language to
perform most of its calculations. The only capabilities built into the kernel are arbitrary
precision arithmetic, simple polynomials, differentiation of simple expressions, and the
ability to interpret the Maple language. So, in order to be very useful, the library has to

be ported as well.

121

Normally, porting the library is a straightforward task. It is simply a matter of copy-
ing the files to the new machine, and installing them in the appropriate directory. This
procedure presents two obstacles to the Oberon port however: there were no tools for

copying large files to the machine, and there are no directories.

The latter problem, that of directories, had already been solved by the CFileIO
module. The path names of each file were simply converted to one long unique file

name. It is the former problem that presented the biggest obstacle.

The Maple kernel was relatively easy to copy to the Ceres machine, since it was only
about 160 kilobytes. The library files on the other hand comprise about 5 megabytes of
source code. This is about one and a half orders of magnitude larger, and therefore that

much more prone to error during any transfer process.

The first thing that was tried was to electronically mail the files over. Each file is
relatively small, and the uuencoded version would only be about 33 per cent larger.
Unfortunately, this quickly failed, as the Ceres network mail system was brought to its
knees by the deluge of messages. A second attempt was made by writing an archiving
program to concatenate the files into a text archive, and then mailing large pieces of the
archive. This also failed due to a maximum message size of about 50 kilobytes imposed

by the mail system; over 100 messages would still have been required.

It was clear that the mail system would be inadequate for the job of transferring that
much information in so little time. After spending a day trying, the author decided on a
different approach. The archiving program was used again to put all the library files in
one large archive. Then, the author wrote a terminal emulation and file transfer utility
for the Ceres, and connected it to a standard terminal port on the network connecting all
the terminals and computers at ETH. This allowed the archive file to be transferred
directly from the VAX to the Ceres. Even this failed on the first attempt due to a limita-
tion of 2.6 megabytes on Oberon files. A second attempt was made using smaller

archives, and all the files were finally transferred.

A dearchiving tool was written in Oberon to extract each file from the archive,
change the name according to the algorithm embodied in CFilelIO, and write the file to
the disk. This flurry of file activity resulted in a minor disk crash, which would have

been a major set back, except for the heroic efforts of a graduate student who managed

122

to reconstruct the file system.

Finally, the port was complete! By this point, almost another whole week had
passed, and little time was left for extensive testing. A random selection of tests from the
Maple test suite was transferred to the Ceres, and all tests except one ran flawlessly. The
one that failed ran out of memory since the bug in the Oberon storage allocator would not
allow enough memory to be allocated. This bug was being fixed at the time, and the

amount of memory being requested by the Maple Machine can probably be increased.

8.4. Performance

During the course of implementation, the author had some doubts about the poten-
tial performance of the result. However, the inner loop of the interpreter was written
almost entirely in terms of the standard procedures SYSTEM.GET and SYSTEM.PUT,
which each generate a single instruction. Examination of the code produced by the com-
piler revealed that one could not have done much better in assembly language. In fact,
Professor Wirth calls this style of programming, "assembly language programming with

Oberon syntax", which indeed it was.

There was not enough time to run all the tests, so no direct timing results were avail-
able for comparison with the tests used in evaluating the performance of the VAX ver-
sion. However, the handful of tests that were run under Oberon were later run on the
VAX version as well. The general results indicated that the Oberon version required
about twice the CPU time as the VAX version. Since Oberon is a single tasking system
though, the Maple Machine gets 100 per cent of the CPU time when it is running,
whereas a much smaller fraction of CPU time is available to a program running on a
VAX. With a medium load on the VAX (a load average of about 3, as reported by the
loadaverage command), the Oberon version of Maple required only about half the real

time as the VAX version to run the same tests.

The subjective opinions of observers at ETH were also favourable. Many were

impressed by Maple’s speed. None had ever witnessed Maple in its compiled form.

All in all, the port of Maple to the Ceres workstation was a success. The vast differ-
ences in operating system architecture and programming methodology were easily over-

come, and it was possible to run the same Maple executable code image on both the

123

Ceres and the VAX. Work is currently underway at ETH to port the Maple Machine to
the new release of Oberon. A faster Ceres workstation, the Ceres-2, with about seven
times the CPU speed, and four times the memory, is also being introduced, which should

result in very good performance for Maple.

Future Directions

Two years of work developing the Maple Machine concept, and writing the develop-
ment tools for it, has proven that it is viable. The machine is operating at a high enough
level that the loss of performance due to interpretation is not too severe. At the same
time, the machine is also simple enough to be quickly and easily ported to new hardware

and operating system environments.

The design of the Maple Machine has not been frozen. New techniques for perfor-
mance improvements are being examined. These include the addition of more complex
instructions, different interpretation techniques, optimization at a higher level, and incor-

porating some small but important parts of the Maple kernel into the Maple Machine.

9.1. The IBM Personal Computer Family

The next task facing the author is to complete the port of Maple to the IBM Personal
Computer family. Since the project was started, this family has expanded to include new
machines with new capabilities. The three main classes of IBM Personal Computers are
those based on the 8088 or 8086 CPU, those based on the 80286 CPU, and the 80386
based IBM Personal System/2 series. Each one is upward compatible with its predeces-
sors, but each provides features that would be beneficial to Maple, and thus should not be
overlooked for the sake of compatibility with the older machines. Thus, the IBM PC port

will probably be divided into three separate projects.

A Maple Machine based port will be performed in order to allow Maple to be run on
the 8088/8086 based machines. This Maple Machine will run under the PC-DOS operat-
ing system, making use of the 640 kilobytes available. The results of this port will also
run on the newer 80286 and 80386 machines, but will not take advantage of any of their

features.

Another Maple Machine based port will be performed specifically for 80286 based
machines. The resulting Maple Machine will run under PC-DOS, OS/2, and possibly
AIX. Maple Machines on 80286 based hardware will be able to access up to 16 mega-

bytes of memory. This will require a special utility program to function under PC-DOS,

124

125

since that operating system limits memory accesses to the first 1 megabyte of the 80286

address space by running the CPU in "real" mode.

Finally, a port will be made to 80386 based machines. These machines can emulate
the 8086, or they can run in native mode, where they are true 32-bit machines. The
address space is still segmented, but each segment can be 4 gigabytes in length. Thus,
the machine effectively has a linear address space. Since this is a 32-bit machine with a
linear address space, it should be possible to compile Maple into 80386 machine code.
Such an implementation will probably only function under AIX, although it may be possi-

ble to create a DOS version using one of the commercial DOS extender packages.

9.2. New Instructions

The Maple Machine currently supports an instruction set of 95 instructions. This
leaves 33 unused opcodes out of the maximum of 128 possible codes. Although little will
be gained by adding new instructions to replace common pairs, nothing would be lost.
And by creating new instructions to perform even more complex operations, some sub-
stantial gains might be made. This is especially important for the IBM PC port, since the

target machine is quite slow to begin with.

9.3. A Threaded Interpreter

The current implementations of the interpreter all employ a central loop, wherein the
next instruction is fetched at the top of the loop, and the appropriate code is branched to
based on the instruction opcode. After executing the instruction, control must be

transferred back to the top of the loop to execute the next instruction.

If the interpreter is to be coded in assembly language, an alternate approach suggests
itself. At the cost of additional space requirements, code can be added to the end of the
execution routine for each instruction to fetch the next instruction and branch to the
desired location. Thus, control transfers from one execution routine to the next, like
beads on a thread, and is known as threaded code [1]. It is actually indirect threaded
code [5], since the instructions are not the actual addresses of the execution routine, but
rather are used as an index into an address table. A partially indirect threaded code tech-

nique is also possible, in which the address of an instruction’s execution routine can be

126

computed from the instruction opcode.

The threaded code technique has the advantage of not requiring a branch (and the
associated overhead) back to the controlling part of a main interpretation loop. The extra
code required in each execution routine would not be very large. Even if this code was
16 bytes, this would only increase the size of the interpreter by 2 kilobytes if there were

128 instructions.

9.4. Global Optimization

As was discussed in Chapter 7, the Maple Machine compiler does not perform any
global optimization. The Maple source code has already been extensively hand optimized
over the years, and it is only recently that compilers have been able to improve it signifi-
cantly. If such a compiler were available for the Maple Machine, performance might be

enhanced.

9.5. Merging the Interpreter and the Maple Kernel

Some parts of the Maple kernel are executed quite frequently, and are responsible
for a large portion of the time that Maple spends executing. Some of these parts are
fairly low level, and not directly involved with the business of symbolic computation. The

most prominent of these are the storage allocation and garbage collection routines.

It might be feasible to extract some of these low level routines from the Maple
source code, and provide their capabilities as instructions in the Maple Machine. The C
compiler could then translate calls to these routines into single instructions. All the
instructions that were formerly executed each time one of these routines was called would
then be replaced by a single instruction, whose operations are executed by the underlying
hardware at proportionally higher speeds. This would of course make the Maple machine

less portable.

Of course, one could get carried away and implement more and more of the Maple
kernel as part of the Machine. In the end one would have a Maple Machine with only
one instruction, with the mnemonic MAPLE. This would effectively be a traditional

port.

127

9.6. A Hardware Maple Machine?

The author is a firm believer in throwing silicon and solder at a problem, and has
often entertained the idea of constructing a Maple Machine in hardware. Such a
machine would of course not contribute to the portability of Maple (unless the machine
weighed very little), but would probably result in one of the fastest Maple implementa-

tions ever achieved.

[1]
(2]

[3]

[4]

[3]

[6]

(7]

(8]

[9]

[10]

[11]

[12]

References
Bell, J.R., “Threaded Code”, Communications of the ACM, 16, 370-372, (1973).

Bell Telephone Laboratories, Inc., UNIX Time-Sharing System, UNIX Programmer’ s
Manual, Holt, Rinehart and Winston (1983).

Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S M., MAPLE
Reference Manual, 5th Edition, WATCOM Publications Limited, Waterloo, Ontario
(1985).

Cheriton, D.R., Malcom, M.A., Melen, L.S., Sager, G.R., “Thoth, a Portable
Real-Time Operating System”, Communications of the ACM, 22, 105-115 (1979).

Dewar, R.B.K., “Indirect Threaded Code”, Communications of the ACM, 18, 330-
331, (1975).

Eberle, H., Hardware Description of the Workstation Ceres, Institute fiir Informatik,
Eidgendssische Technische Hochschule Ziirich, (1987).

Gardner, J.A. A Tutorial Guide to the Language B, University of Waterloo, Water-
loo, Ontario, Canada (1980).

Hendrix, J.E., The Small-C Handbook, Reston Publishing Company, Inc., Reston
Virginia (1984).
Intel Corporation, Microprocessor and Peripheral Handbook, Intel Corporation, Santa

Clara, California (1983).

Kernighan, B.W., Ritchie, D.M., The C Programming Language, Bell Laboratories,
Murray Hill, New Jersey (1978).

Knuth, D.E., “An Empirical Study of FORTRAN Programs”, Software — Practice
and Experience, 1, 105-173, (1971).

Lecarme, O., “Pascal and Portability”, Pascal — The Language and its Implementa-
tion, 21-35, John Wiley & Sons, Ltd., Chichester — New York — Brisbane —
Toronto (1981).

128

129

[13] Miller, D.L., “Stack Machine and Compiler Design”, Byte — The Small Systems
Journal, Vol.12, No.4, 177-186 (1987).

[14] Moore, C.H., Rather, E.D., FORTH — An Application-Oriented Language
Programmer’s Guide, National Radio Astronomy Observatory, Green Bank, W. Vir-
ginia.

[15] Nori, K.V., Ammann, U., Jensen, K., Nageli, H.H., Jacobi, Ch., “Pascal-P

Implementation Notes”, Pascal — The Language and its Implementation, 125-170,
(1981).

[16] Ohran, R., “Lilith and Modula-2”, Byte — The Small Systems Journal, Vol.9, No.8,
181-194 (1984).

[17] Poole, P.C., Waite, W.M., Advanced Course in Software Engineering, Springer-
Verlag, Berlin — Heidelberg — New York (1973).

[18] Richards, M., BCPL, The Language and its Compiler, Cambridge University Press,
Cambridge — New York (1979).

[19] Ryder, B.G., “The PFORT Verifier”, Software — Practice and Experience, 4, 359-
377, (1974).

[20] Tannenbaum, A.S., “Implications of Structured Programming for Machine
Architecture”, Communications of the ACM, 21, 237-246 (1978).

[21] University of California, UNIX Programmer’s Manual: 4.2 Berkeley Software Distri-
bution, Virtual VAX-11 Version, Computer Science Division, University of California,
Berkeley (1983).

[22] Welsh, J., Sneeringer, W.J., Hoare, C.A.R., “Ambiguities and Insecurities in
Pascal”, Pascal — The Language and its Implementation, 5-19, (1981).

[23] Wirth, N., “Pascal-S: A Subset and its Implementation”, Pascal — The Language and
its Implementation, 199-259, (1981).

[24] Wirth, N., Programming in Modula-2, Springer-Verlag, Berlin — Heidelberg — New
York — Tokyo, (1985).

130

[25] Wirth, N., Gutknecht, J., The Oberon System, Institute fiir Informatik,
Eidgenossische Technische Hochschule Ziirich, (1988).

[26] Wirth, N., “The Programming Language Oberon”, Sofiware — Practice and Experi-
ence, 18, 671-690 (1988).

[27] Wirth, N., “From Modula to Oberon”, Software — Practice and Experience, 18,
661-670 (1980).

Related Works

Bal, H.E., Tannenbaum, A.S., “Langauge- and Machine-Independent Global Optimiza-
tion on Intermediate Code”, Computer Language, 11, 105-121 (1986).

Berry, R.E., “Experience with the Pascal P-Compiler”, Software — Practice and Experi-
ence, 8, 617-627 (1978).

Coleman, S.S., Poole, P.C., Waite, W.M., “The Mobile Programming System, Janus”,
Software — Practice and Experience, 4, 5-23 (1974).

Davidson, J.W., Gresh, J.V., “Cint: A RISC Interpreter for the C Programming
Language”, SIGPLAN Notices, Vol.22, No.7, (1987).

Klint, P., “Interpretation Techniques”, Software — Practice and Experience, 11, 963-973
(1981).

Newey, M.C., Poole, P.C., Waite, W.M., “Abstract Machine Modelling to Produce
Portable Software — A Review and Evaluation”, Software — Practice and Experience, 2,
107-136 (1972).

Richards, M., “The Portability of the BCPL Compiler”, Software — Practice and Experi-
ence, 1, 135-146 (1971).

Tannenbaum, A.S., van Stavern, H., Keizer, E.G., Stevenson, J.W., “A Practical Tool
Kit for Making Portable Compilers”, Communications of the ACM, 26, 654-660 (1983).

Tannenbaum, A.S., van Stavern, H., Keizer, E.G., Stevenson, J.W., Description of a
Machine Architecture for use with Block Structured Languages, Informatica Rapport IR-81,
Vrije Universiteit, Amsterdam (1983).

Tannenbaum, A.S., van Stavern, H., Stevenson, J.W., “Using Peephole Optimization on
Intermediate Code”, ACM Transactions on Programming Languages and Systems, 4, 21-36
(1982).

Waite, W.M., “The Mobile Programming System: STAGE2”, Communications of the
ACM, 13, 415-421 (1970).

131

